opencv--3d数据拟合平面并对倾斜平面矫正

对于深度数据而言,mat记录的是深度值,当对深度值进行各种处理,例如获取直线、圆、椭圆等其他形状时,如果平面没有完全水平,你使用opencv处理精度是有损失的,因此这里使用opencv 先对平面进行矫正,矫正原理是在有效平面内随机采集3000点的深度数据,使用深度数据进行拟合平面,计算平面的倾斜较大,然后使用角度对原始数据进行矫正,代码如下:

// 将深度图转换为点云
std::vector<cv::Point3f> depthToPointCloud(const cv::Mat& depthImage) {std::vector<cv::Point3f> pointCloud;// 设置随机数生成器std::random_device rd;std::mt19937 gen(rd());std::uniform_int_distribution<> distRow(0, depthImage.rows - 1);std::uniform_int_distribution<> distCol(0, depthImage.cols - 1);// 要提取的像素点数量int numPixels = 2000; // 你可以根据需要调整这个数量// 存储随机提取的像素点std::vector<cv::Vec3b> randomPixels;for (int i = 0; i < numPixels; ++i) {int y = distRow(gen);int x = distCol(gen);//randomPixels.push_back(image.at<cv::Vec3b>(row, col));cv::Point3f point((float)x, (float)y, depthImage.at<float>(y, x)); // 构造三维点pointCloud.push_back(point); // 添加到点云}//for (int y = 0; y < depthImage.rows; ++y) {//    for (int x = 0; x < depthImage.cols; ++x) {//        float depth = depthImage.at<float>(y, x); // 获取深度值//        //if (std::isnan(depth) || depth <= 0.0) {//        //    continue; // 跳过无效深度值//        //}//        cv::Point3f point((float)x, (float)y, depth); // 构造三维点//        pointCloud.push_back(point); // 添加到点云//    }//}return pointCloud;
}// 函数:拟合平面
cv::Vec4f fitPlaneRANSAC(const std::vector<cv::Point3f>& points, int maxIter = 1000, float threshold = 0.01) {if (points.empty())return cv::Vec4f();cv::Vec4f bestPlane;int bestInliers = 0;for (int iter = 0; iter < maxIter; ++iter) {// 随机选择三个点std::vector<int> indices(points.size());std::iota(indices.begin(), indices.end(), 0);std::shuffle(indices.begin(), indices.end(), std::default_random_engine(5));cv::Point3f p1 = points[indices[0]];cv::Point3f p2 = points[indices[1]];cv::Point3f p3 = points[indices[2]];// 计算平面的法向量cv::Point3f v1 = p2 - p1;cv::Point3f v2 = p3 - p1;cv::Point3f normal = v1.cross(v2);normal /= cv::norm(normal);// 平面公式:Ax + By + Cz + D = 0float D = -normal.dot(p1);cv::Vec4f plane(normal.x, normal.y, normal.z, D);// 计算内点数量int inliers = 0;for (const auto& point : points) {float distance = std::abs(plane[0] * point.x + plane[1] * point.y + plane[2] * point.z + plane[3]);if (distance < threshold) {inliers++;}}// 更新最佳平面if (inliers > bestInliers) {bestInliers = inliers;bestPlane = plane;}}return bestPlane;
}// 函数:矫正平面
void correctPlane(const cv::Vec4f& plane, cv::Mat& points) {cv::Mat normal_m, normal_m_8;cv::normalize(points, normal_m, 1, 0, cv::NORM_MINMAX);normal_m.convertTo(normal_m_8, CV_8U, 255.0);cv::Vec3f normal(plane[0], plane[1], plane[2]);cv::Vec3f zAxis(0, 0, 1);cv::Vec3f rotationAxis = normal.cross(zAxis);float angle = std::acos(normal.dot(zAxis) / (cv::norm(normal) * cv::norm(zAxis)));cv::Mat rotationMatrix;cv::Rodrigues(rotationAxis * angle, rotationMatrix);for (int i = 0; i < points.rows; ++i) {cv::Vec3f point = points.at<cv::Vec3f>(i);// 将 point 转换为 cv::Mat 类型cv::Mat pointMat = (cv::Mat_<float>(3, 1) << point[0], point[1], point[2]);// 矩阵乘法cv::Mat transformedPointMat = rotationMatrix * pointMat;// 将结果转换回 cv::Vec3f 类型points.at<cv::Vec3f>(i) = cv::Vec3f(transformedPointMat.at<float>(0), transformedPointMat.at<float>(1), transformedPointMat.at<float>(2));}cv::Mat normal_m_, normal_m_8_;cv::normalize(points, normal_m_, 1, 0, cv::NORM_MINMAX);normal_m_.convertTo(normal_m_8_, CV_8U, 255.0);}

从矫正前的数据和矫正后的数据可以发现,平面得到了很好得了很好的矫正。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/21723.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华为OD机试 - 最大坐标值(Java 2024 D卷 100分)

华为OD机试 2024C卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试&#xff08;JAVA&#xff09;真题&#xff08;A卷B卷C卷&#xff09;》。 刷的越多&#xff0c;抽中的概率越大&#xff0c;每一题都有详细的答题思路、详细的代码注释、样例测试…

数据结构第三篇【链表的相关知识点一及在线OJ习题】

数据结构第三篇【链表的相关知识点一及在线OJ习题】 链表链表的实现链表OJ习题顺序表和链表的区别和联系 本文章主要讲解关于链表的相关知识&#xff0c;喜欢的可以三连喔 &#x1f600;&#x1f603;&#x1f604;&#x1f604;&#x1f60a;&#x1f60a;&#x1f643;&#…

【前缀“选区-” bat脚本】

我们可以提供一个更完整的批处理脚本和PowerShell脚本。确保它们都能正确处理带有前缀“选区-”的文件名。 批处理脚本(.bat): 以下是改进后的批处理脚本,使用dir /b /a-d列出文件,并确保正确处理包含非ASCII字符的文件名: @echo off setlocal enabledelayedexpansion …

Makefile的入门学习

一、Makefile的入门学习 编译工具及构建工具介绍 在之前的课程&#xff0c;都是直接使用gcc对代码进行编译&#xff0c;这对简单的工程是可以的&#xff0c;但当我们遇到复杂的工程时&#xff0c;每次用gcc等编译工具去操作就会显得很低效。因此make工具就出现了&#xff0c;…

LeetCode1137第N个泰波那契数

题目描述 泰波那契序列 Tn 定义如下&#xff1a; T0 0, T1 1, T2 1, 且在 n > 0 的条件下 Tn3 Tn Tn1 Tn2给你整数 n&#xff0c;请返回第 n 个泰波那契数 Tn 的值。 解析 递归应该会超时&#xff0c;可以用循环&#xff0c;或者官方解法的矩阵的幂。 public int tr…

(4) qml动态元素

文章目录 概述注意 动画元素变化的策略Animation on 变化behavior on⽤standalone animation注意 缓冲曲线&#xff08;Easing Curves&#xff09;动画分组 概述 这⼀章介绍如何控制属性值的变化&#xff0c;通过动画的⽅式在⼀段时间内来改变属性值。这项技术是建⽴⼀个现代化…

获取(复制)网页上的文字

获取&#xff08;复制&#xff09;网页上的文字 今天在搜索历史课本上一段文言文的翻译时&#xff0c;找到的网页&#xff0c;屏蔽了右键&#xff0c;不能选择&#xff0c;当然不让复制啦。对于这样的网站可以采用如下方法进行数据的获取&#xff0c;以chrome为例。 1、网页另…

keil5常见使用技巧记录(更新)

快速到函数定义 F12或自己定义快捷键CTRLK&#xff08;个人设定&#xff09; 修改快捷键 下图实例是快速跳转到函数或变量定义位置&#xff0c;当然可以定义其他功能快捷键&#xff0c;如快速注释多行&#xff0c;快速消除注释等 标记全部查找变量的蓝色框取消 CTRLshiftF2…

【YOLOv10改进[Backbone]】图像修复网络AirNet助力YOLOv10目标检测效果 + 含全部代码和详细修改方式 + 手撕结构图 + 全网首发

本文带来的是图像复原网络AirNet&#xff0c;它由基于对比度的退化编码器( CBDE )和退化引导的恢复网络( DGRN )两个模块组成。可以在一个网络中恢复各种退化图像。AirNet不受损坏类型和级别的先验限制&#xff0c;仅使用观察到的损坏图像进行推理。本文中将使用图像修复网络Ai…

Python | 倒叙输出和隔位输出(数组和列表)

数组的概念和特点&#xff1a; 固定大小&#xff1a;数组一旦声明&#xff0c;其大小通常是固定的&#xff0c;不能在运行时动态更改。就好比开设了一个30人的班级&#xff0c;班级大小已经固定&#xff0c;不能再改变班级的规模。相同数据类型&#xff1a; 数组中的所有元素必…

使用Python绘制瀑布图

使用Python绘制瀑布图 瀑布图效果代码 瀑布图 瀑布图&#xff08;Waterfall Chart&#xff09;是一种数据可视化工具&#xff0c;用于展示累积数值的变化&#xff0c;尤其适合于展示随时间或过程中的增减变化。它通常用于财务分析&#xff0c;如展示收入、支出和净利润的变化过…

【离散数学】数理逻辑集合论知识点汇总

期末题型&#xff1a; 一、 单选题&#xff08;每题2分&#xff0c;10题共20分&#xff09; 命题判定、哈斯图边计算等 二、 填空题&#xff08;每空1分&#xff0c;共20分&#xff09; 与非和或非的表示等 三、 简答题&#xff08;10题&#xff0c;每题6分&#xff0c;共60分&…

安装禅道,帮助测试,测试打磨项目精度。

先检查docker版本。 sudo docker network create --subnet172.172.172.0/24 zentaonet sudo docker run --name zentao2 -p 8080:80 -p 3307:3306 --networkzentaonet --ip 172.172.172.3 -e MYSQL_INTERNALtrue -v /media/cykj/3T/ze…

【设计模式】单例模式(创建型)⭐⭐⭐

1.概念 1.1 什么是单例模式 单例模式属于创建型模式&#xff0c;一个单例类在任何情况下都只存在一个实例&#xff0c; 构造方法必须是私有的、由自己创建一个静态变量存储实例&#xff0c;对外提供一 个静态公有方法获取实例。 1.2 优点与缺点 优点:是内存中只有一个实例&…

【力扣】不同的子序列

一、题目描述 给你两个字符串 s 和 t &#xff0c;统计并返回在 s 的 子序列 中 t 出现的个数&#xff0c;结果需要对 109 7 取模。 示例 1&#xff1a; 输入&#xff1a;s "rabbbit", t "rabbit"输出&#xff1a; 3 解释&#xff1a; 如下所示, 有 3 种…

【十年java搬砖路】Jumpserver docker版安装及配置Ldap登陆认证

Jumpserver docker 安装启动教程 拉取镜像 docker pull JumpServer启动进行前确保有Redis 和Mysql 创建jumperServer数据库 在MYSQL上执行 创建数据库 登陆MYSQL mysql -u root -p 创建Jumperserveri库 create database jumpserver default charset utf8mb4;可以为jumperSe…

ubuntu 22.04配置静态ip

ubuntu 22.04配置静态ip vim /etc/netplan/01-network-manager-all.yaml# Let NetworkManager manage all devices on this system network:renderer: NetworkManagerethernets:enp4s0f1:addresses:- 192.168.1.18/24dhcp4: falseroutes:- to: defaultvia: 192.168.1.1nameser…

「动态规划」买卖股票的最佳时机

力扣原题链接&#xff0c;点击跳转。 给定一个整数数组prices&#xff0c;prices[i]表示股票在第i天的价格。你最多完成2笔交易。你不能同时参与多笔交易&#xff08;你必须在再次购买前出售掉之前的股票&#xff09;。设计一个算法计算最大利润。 我们用动态规划的思想来解决…

【软件开发】Java学习路线

本路径视频教程均来自尚硅谷B站视频&#xff0c;Java学习课程我已经收藏在一个文件夹下&#xff0c;B站文件夹同时会收藏其他Java视频&#xff0c;感谢关注。指路&#xff1a;https://www.bilibili.com/medialist/detail/ml3113981545 2024Java学习路线&#xff08;快速版&…

揭秘YAML:Python中的PyYAML应用

&#x1f340; 前言 博客地址&#xff1a; CSDN&#xff1a;https://blog.csdn.net/powerbiubiu &#x1f44b; 简介 本章节介绍YAML文件格式的操作&#xff0c;通过Python的第三方库 PyYaml 来实现文件操作&#xff0c;在 Pyhon 代码中无论读取还是写入&#xff0c;都是使用…