YOLOv8改进(一)-- 轻量化模型ShuffleNetV2

文章目录

  • 1、前言
  • 2、ShuffleNetV2代码实现
    • 2.1、创建ShuffleNet类
    • 2.2、修改tasks.py
    • 2.3、创建shufflenetv2.yaml文件
    • 2.4、跑通示例
  • 3、碰到的问题
  • 4、目标检测系列文章

1、前言

移动端设备也需要既准确又快的小模型。为了满足这些需求,一些轻量级的CNN网络如MobileNet和ShuffleNet被提出,它们在速度和准确度之间做了很好地平衡。ShuffleNetv2是旷视2018年提出的ShuffleNet升级版本,并被ECCV2018收录。

当然也可以修改YOLOv5模型,具体参考= = = = =>YOLOv5改进(四)–轻量化模型ShuffleNetv2

2、ShuffleNetV2代码实现

2.1、创建ShuffleNet类

ultralytics/nn文件夹中新建ShuffleNet.py文件

import torch
import torch.nn as nnclass Conv_maxpool(nn.Module):def __init__(self, c1, c2):  # ch_in, ch_outsuper().__init__()self.conv= nn.Sequential(nn.Conv2d(c1, c2, kernel_size=3, stride=2, padding=1, bias=False),nn.BatchNorm2d(c2),nn.ReLU(inplace=True),)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)def forward(self, x):return self.maxpool(self.conv(x))class ShuffleNetV2(nn.Module):def __init__(self, inp, oup, stride):  # ch_in, ch_out, stridesuper().__init__()self.stride = stridebranch_features = oup // 2assert (self.stride != 1) or (inp == branch_features << 1)if self.stride == 2:# copy inputself.branch1 = nn.Sequential(nn.Conv2d(inp, inp, kernel_size=3, stride=self.stride, padding=1, groups=inp),nn.BatchNorm2d(inp),nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(branch_features),nn.ReLU(inplace=True))else:self.branch1 = nn.Sequential()self.branch2 = nn.Sequential(nn.Conv2d(inp if (self.stride == 2) else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(branch_features),nn.ReLU(inplace=True),nn.Conv2d(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1, groups=branch_features),nn.BatchNorm2d(branch_features),nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(branch_features),nn.ReLU(inplace=True),)def forward(self, x):if self.stride == 1:x1, x2 = x.chunk(2, dim=1)out = torch.cat((x1, self.branch2(x2)), dim=1)else:out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)out = self.channel_shuffle(out, 2)return outdef channel_shuffle(self, x, groups):N, C, H, W = x.size()out = x.view(N, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous().view(N, C, H, W)return out

2.2、修改tasks.py

修改ultralytics/nn/tasks.pyparse_model()函数:添加以下代码

elif m in [ShuffleNetV2, Conv_maxpool]:c1, c2 = ch[f], args[0]if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(c2 * width, 8)args = [c1, c2, *args[1:]]    

在这里插入图片描述

2.3、创建shufflenetv2.yaml文件

ultralytics/yolo/cfg目录下创建shufflenetv2.yaml

#  Ultralytics YOLO 🚀, GPL-3.0 license# Parameters
nc: 6  # number of classes
depth_multiple: 0.33  # scales module repeats
width_multiple: 0.50  # scales convolution channels# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv_maxpool, [24]]    # 0-P2/4- [-1, 1, ShuffleNetV2, [116, 2]] # 1-P3/8- [-1, 3, ShuffleNetV2, [116, 1]] # 2- [-1, 1, ShuffleNetV2, [232, 2]] # 3-P4/16- [-1, 7, ShuffleNetV2, [232, 1]] # 4- [-1, 1, ShuffleNetV2, [464, 2]] # 5-P5/32- [-1, 3, ShuffleNetV2, [464, 1]] # 6- [-1, 1, SPPF, [1024, 5]]  # 7# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 10- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 2], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 13 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 10], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 7], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[13, 16, 19], 1, Detect, [nc]]  # Detect(P3, P4, P5)

2.4、跑通示例

核查是否修改成功,见下图,至此全部修改成功。

在这里插入图片描述

3、碰到的问题

File “/public/home/miniconda/envs/yolov8/lib/python3.8/site-packages/ultralytics/nn/tasks.py”, line 855, in parse_model

m = getattr(torch.nn, m[3:]) if “nn.” in m else globals()[m] # get module KeyError: ‘Conv_maxpool’

说明你没有真正修改tasks.py文件,需要你重新将2、ShuffleNetV2代码实现重新弄一遍,注意本次要来到 /public/home/miniconda/envs/yolov8/lib/python3.8/site-packages/ultralytics/nn 创建 ShuffleNet.py文件和修改task.py文件

4、目标检测系列文章

  1. YOLOv5s网络模型讲解(一看就会)
  2. 生活垃圾数据集(YOLO版)
  3. YOLOv5如何训练自己的数据集
  4. 双向控制舵机(树莓派版)
  5. 树莓派部署YOLOv5目标检测(详细篇)
  6. YOLO_Tracking 实践 (环境搭建 & 案例测试)
  7. 目标检测:数据集划分 & XML数据集转YOLO标签
  8. DeepSort行人车辆识别系统(实现目标检测+跟踪+统计)
  9. YOLOv5参数大全(parse_opt篇)
  10. YOLOv5改进(一)-- 轻量化YOLOv5s模型
  11. YOLOv5改进(二)-- 目标检测优化点(添加小目标头检测)
  12. YOLOv5改进(三)-- 引进Focaler-IoU损失函数
  13. YOLOv5改进(四)–轻量化模型ShuffleNetv2
  14. YOLOv5改进(五)-- 轻量化模型MobileNetv3
  15. YOLOv5改进(六)–引入YOLOv8中C2F模块

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/21247.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

十_信号4-SIGCHLD信号

SIGCHLD信号 在学习进程控制的时候&#xff0c;使用wait和waitpid系统调用何以回收僵尸进程&#xff0c;父进程可以阻塞等待&#xff0c;也可以非阻塞等待&#xff0c;采用轮询的方式不停查询子进程是否退出。 采用阻塞式等待&#xff0c;父进程就被阻塞了&#xff0c;什么都干…

力扣83. 删除排序链表中的重复元素

Problem: 83. 删除排序链表中的重复元素 文章目录 题目描述思路复杂度Code 题目描述 思路 1.定义快慢指针fast、slow均指向head&#xff1b; 2.每次fast后移一位&#xff0c;当fast和slow指向的节点值不一样时&#xff0c;将slow.next指向fast同时使slow指向fast&#xff1b; 3…

MyBatis框架-开发方式+参数传递+#{}、${}+返回值处理+查询结果封装为对象+resultType

一、开发方式 MyBatis-Dao层Mapper接口化开发 二、注意事项 1、Mapper接口与Mapper.xml映射文件要满足4个对应 &#xff08;1&#xff09;Mapper接口的全类名必须与Mapper映射文件中的namespace相同 &#xff08;2&#xff09;Mapper接口中的每一个方法名在Mapper映射文件…

回溯算法之电话号码字母组合

题目&#xff1a; 给定一个仅包含数字 2-9 的字符串&#xff0c;返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下&#xff08;与电话按键相同&#xff09;。注意 1 不对应任何字母。 示例 1&#xff1a; 输入&#xff1a;digits "2…

Java web应用性能分析之【jvisualvm远程连接云服务器】

Java web应用性能分析之【java进程问题分析概叙】-CSDN博客 Java web应用性能分析之【java进程问题分析工具】-CSDN博客 前面整理了java进程问题分析和分析工具&#xff0c;现在可以详细看看jvisualvm的使用&#xff0c;一般java进程都是部署云服务器&#xff0c;或者托管IDC机…

每周统计-20240531

用于测试程序的稳定性&#xff1a; 龙虎榜&#xff1a; 成交额&#xff1a; 封成比&#xff1a; 收盘前放量&#xff1a; 开盘抢筹&#xff1a; 封单额&#xff1a;

论文阅读:Correcting Motion Distortion for LIDAR HD-Map Localization

目录 概要 Motivation 整体架构流程 技术细节 小结 论文地址&#xff1a;http://arxiv.org/pdf/2308.13694.pdf 代码地址&#xff1a;https://github.com/mcdermatt/VICET 概要 激光雷达的畸变矫正是一个非常重要的工作。由于扫描式激光雷达传感器需要有限的时间来创建…

linux命令:调试必备工具dmesg

在服务器上进行芯片调试时&#xff0c;我们会遇到各种各样的问题&#xff0c;很多问题与操作系统相关。此时就需要了解操作系统发生了哪些事件。 dmesg 是linux系统中用来打印或控制内核缓冲区内容的命令。这个环形缓冲区记录了系统启动以来发生的各种事件消息&#xff0c;包括…

ChatTTS改良版 - 高度逼真的人类情感文本生成语音工具(TTS)本地一键整合包下

先介绍下ChatTTS 和之前发布的 Fish Speech 类似&#xff0c;都是免费开源的文本生成语音的AI软件&#xff0c;但不同的是&#xff0c;ChatTTS测试下来&#xff0c;对于人类情感语调的模仿&#xff0c;应该是目前开源项目做的最好的&#xff0c;是一款高度接近人类情感、音色、…

WordPress中借助Table of Contents Plus+Widget Options插件,实现仅在文章侧边栏显示文章目录的功能

本文转自博主的个人博客&#xff1a;https://blog.zhumengmeng.work,欢迎大家前往查看。 原文链接&#xff1a;点我访问 序言&#xff1a;今天心血来潮&#xff0c;写了一篇文章&#xff0c;忽然发现自己的文章极少有目录&#xff0c;这对于长文章的阅读来说是十分不利的&#…

【自动驾驶】针对低速无人车的线控底盘技术

目录 术语定义 一般要求 操纵装置 防护等级 识别代号 技术要求 通过性要求 直线行驶稳定性 环境适应性要求 功能安全要求 信息安全要求 故障处理要求 通信接口 在线升级(OTA) 线控驱动 动力性能 驱动控制响应能力 线控制动 行车制动 制动响应能力 线控转向 总体要求 线控…

车联网安全入门——ICSim模拟器使用

文章目录 车联网安全入门——ISCim模拟器使用介绍主要特点&#xff1a;使用场景&#xff1a; 安装使用捕获can流量candumpcansnifferwiresharkSavvyCAN主要特点&#xff1a;使用场景&#xff1a; 重放can报文cansendSavvyCAN 总结 车联网安全入门——ISCim模拟器使用 &#x1…

SQL刷题笔记day8——SQL进阶——表与索引操作

目录 1 创建一张新表 2 修改表 3 删除表 4 创建索引 5 删除索引 1 创建一张新表 我的答案 create table if not exists user_info_vip (id int(11) primary key auto_increment Comment自增ID, # 有了主键就不用写not nul了 uid int(11) unique not null Comment用户ID, …

272 基于matlab的形态滤波和局域值分解(LMD)的齿轮故障诊断

基于matlab的形态滤波和局域值分解&#xff08;LMD&#xff09;的齿轮故障诊断&#xff0c;GUI交互界面。通过形态滤波对一维信号进行降噪处理&#xff0c;并通过LMD局部均值分解提取故障信号&#xff0c;最后提取处故障频率。程序已调通&#xff0c;可直接运行。 272 形态滤波…

微信小程序的服务调取

微信小程序的服务调取概述 微信小程序允许开发者通过网络请求与服务器进行交互&#xff0c;从而实现数据的上传和下载。这是通过小程序提供的API&#xff0c;如wx.request、wx.downloadFile、wx.uploadFile等来完成的。这些API使得小程序可以从远程服务器获取数据&#xff0c;…

Java+SVNCloud+Mysql课程设计

文章目录 1、主要内容2、所需准备3、与sql访问的中间类&#xff1a;SqlMessage4、窗口界面5、main方法 1、主要内容 课程设计&#xff0c;主要通过Javas wing创建窗口&#xff0c;jdbc连接云端mysql数据库进行基本操作&#xff0c;支持随机生成数据并用动态展示数据结果。 先…

一种最大重叠离散小波包特征提取和支持向量机的ECG心电信号分类方法(MATLAB 2018)

目前小波分析算法常采用Mallat快速算法。该算法由与滤波器卷积、隔点采样和隔点插零等三个环节组成。由于实际使用的滤波器并不具有理想频域特性&#xff0c;使得在标准二进小波算法中存在着频率混叠和小波系数失真等缺点&#xff0c;在标准二进小波包算法中还存在频带错乱现象…

展现市场布局雄心,ATFX再度亮相非洲峰会,开启区域市场新篇章

自2023年全球市场营销战略部署实施以来&#xff0c;ATFX在全球各区域市场取得了丰硕成果&#xff0c;其品牌实力、知名度、影响力均有大幅提升。在这场全球扩张的征程中&#xff0c;非洲市场日益成为集团关注的焦点。自2023年首次踏上这片充满潜力的市场以来&#xff0c;ATFX持…

列表标签 ul+ol/li

04-07、列表标签 ulol/li 概述 列表标签&#xff1a;无序列表ulli、有序列表olli和定义列表 dl dt dd 三种&#xff0c;在网页制作中应用非常广泛&#xff0c;列表就是信息资源的一种展示形式。 特点&#xff1a; 它们都是块元素&#xff0c;可以受到宽度&#xff0c;高度&…

springboot 实现kafka多源配置

文章目录 背景核心配置自动化配置类注册生产者、消费者核心bean到spring配置spring.factoriesyml配置使用 源码仓库 背景 实际开发中&#xff0c;不同的topic可能来自不同的集群&#xff0c;所以就需要配置不同的kafka数据源&#xff0c;基于springboot自动配置的思想&#xf…