YOLOv8改进(一)-- 轻量化模型ShuffleNetV2

文章目录

  • 1、前言
  • 2、ShuffleNetV2代码实现
    • 2.1、创建ShuffleNet类
    • 2.2、修改tasks.py
    • 2.3、创建shufflenetv2.yaml文件
    • 2.4、跑通示例
  • 3、碰到的问题
  • 4、目标检测系列文章

1、前言

移动端设备也需要既准确又快的小模型。为了满足这些需求,一些轻量级的CNN网络如MobileNet和ShuffleNet被提出,它们在速度和准确度之间做了很好地平衡。ShuffleNetv2是旷视2018年提出的ShuffleNet升级版本,并被ECCV2018收录。

当然也可以修改YOLOv5模型,具体参考= = = = =>YOLOv5改进(四)–轻量化模型ShuffleNetv2

2、ShuffleNetV2代码实现

2.1、创建ShuffleNet类

ultralytics/nn文件夹中新建ShuffleNet.py文件

import torch
import torch.nn as nnclass Conv_maxpool(nn.Module):def __init__(self, c1, c2):  # ch_in, ch_outsuper().__init__()self.conv= nn.Sequential(nn.Conv2d(c1, c2, kernel_size=3, stride=2, padding=1, bias=False),nn.BatchNorm2d(c2),nn.ReLU(inplace=True),)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)def forward(self, x):return self.maxpool(self.conv(x))class ShuffleNetV2(nn.Module):def __init__(self, inp, oup, stride):  # ch_in, ch_out, stridesuper().__init__()self.stride = stridebranch_features = oup // 2assert (self.stride != 1) or (inp == branch_features << 1)if self.stride == 2:# copy inputself.branch1 = nn.Sequential(nn.Conv2d(inp, inp, kernel_size=3, stride=self.stride, padding=1, groups=inp),nn.BatchNorm2d(inp),nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(branch_features),nn.ReLU(inplace=True))else:self.branch1 = nn.Sequential()self.branch2 = nn.Sequential(nn.Conv2d(inp if (self.stride == 2) else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(branch_features),nn.ReLU(inplace=True),nn.Conv2d(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1, groups=branch_features),nn.BatchNorm2d(branch_features),nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(branch_features),nn.ReLU(inplace=True),)def forward(self, x):if self.stride == 1:x1, x2 = x.chunk(2, dim=1)out = torch.cat((x1, self.branch2(x2)), dim=1)else:out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)out = self.channel_shuffle(out, 2)return outdef channel_shuffle(self, x, groups):N, C, H, W = x.size()out = x.view(N, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous().view(N, C, H, W)return out

2.2、修改tasks.py

修改ultralytics/nn/tasks.pyparse_model()函数:添加以下代码

elif m in [ShuffleNetV2, Conv_maxpool]:c1, c2 = ch[f], args[0]if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(c2 * width, 8)args = [c1, c2, *args[1:]]    

在这里插入图片描述

2.3、创建shufflenetv2.yaml文件

ultralytics/yolo/cfg目录下创建shufflenetv2.yaml

#  Ultralytics YOLO 🚀, GPL-3.0 license# Parameters
nc: 6  # number of classes
depth_multiple: 0.33  # scales module repeats
width_multiple: 0.50  # scales convolution channels# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv_maxpool, [24]]    # 0-P2/4- [-1, 1, ShuffleNetV2, [116, 2]] # 1-P3/8- [-1, 3, ShuffleNetV2, [116, 1]] # 2- [-1, 1, ShuffleNetV2, [232, 2]] # 3-P4/16- [-1, 7, ShuffleNetV2, [232, 1]] # 4- [-1, 1, ShuffleNetV2, [464, 2]] # 5-P5/32- [-1, 3, ShuffleNetV2, [464, 1]] # 6- [-1, 1, SPPF, [1024, 5]]  # 7# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 10- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 2], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 13 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 10], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 7], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[13, 16, 19], 1, Detect, [nc]]  # Detect(P3, P4, P5)

2.4、跑通示例

核查是否修改成功,见下图,至此全部修改成功。

在这里插入图片描述

3、碰到的问题

File “/public/home/miniconda/envs/yolov8/lib/python3.8/site-packages/ultralytics/nn/tasks.py”, line 855, in parse_model

m = getattr(torch.nn, m[3:]) if “nn.” in m else globals()[m] # get module KeyError: ‘Conv_maxpool’

说明你没有真正修改tasks.py文件,需要你重新将2、ShuffleNetV2代码实现重新弄一遍,注意本次要来到 /public/home/miniconda/envs/yolov8/lib/python3.8/site-packages/ultralytics/nn 创建 ShuffleNet.py文件和修改task.py文件

4、目标检测系列文章

  1. YOLOv5s网络模型讲解(一看就会)
  2. 生活垃圾数据集(YOLO版)
  3. YOLOv5如何训练自己的数据集
  4. 双向控制舵机(树莓派版)
  5. 树莓派部署YOLOv5目标检测(详细篇)
  6. YOLO_Tracking 实践 (环境搭建 & 案例测试)
  7. 目标检测:数据集划分 & XML数据集转YOLO标签
  8. DeepSort行人车辆识别系统(实现目标检测+跟踪+统计)
  9. YOLOv5参数大全(parse_opt篇)
  10. YOLOv5改进(一)-- 轻量化YOLOv5s模型
  11. YOLOv5改进(二)-- 目标检测优化点(添加小目标头检测)
  12. YOLOv5改进(三)-- 引进Focaler-IoU损失函数
  13. YOLOv5改进(四)–轻量化模型ShuffleNetv2
  14. YOLOv5改进(五)-- 轻量化模型MobileNetv3
  15. YOLOv5改进(六)–引入YOLOv8中C2F模块

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/21247.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何进入docker容器中

要进入正在运行的Docker容器&#xff0c;您可以使用docker exec命令。这里是一个基本的命令示例&#xff1a; docker exec -it <container_id_or_name> /bin/bash这里的-it参数是为了让我们能交互式地使用容器的shell。<container_id_or_name>是您想要进入的容器的…

十_信号4-SIGCHLD信号

SIGCHLD信号 在学习进程控制的时候&#xff0c;使用wait和waitpid系统调用何以回收僵尸进程&#xff0c;父进程可以阻塞等待&#xff0c;也可以非阻塞等待&#xff0c;采用轮询的方式不停查询子进程是否退出。 采用阻塞式等待&#xff0c;父进程就被阻塞了&#xff0c;什么都干…

力扣83. 删除排序链表中的重复元素

Problem: 83. 删除排序链表中的重复元素 文章目录 题目描述思路复杂度Code 题目描述 思路 1.定义快慢指针fast、slow均指向head&#xff1b; 2.每次fast后移一位&#xff0c;当fast和slow指向的节点值不一样时&#xff0c;将slow.next指向fast同时使slow指向fast&#xff1b; 3…

MyBatis框架-开发方式+参数传递+#{}、${}+返回值处理+查询结果封装为对象+resultType

一、开发方式 MyBatis-Dao层Mapper接口化开发 二、注意事项 1、Mapper接口与Mapper.xml映射文件要满足4个对应 &#xff08;1&#xff09;Mapper接口的全类名必须与Mapper映射文件中的namespace相同 &#xff08;2&#xff09;Mapper接口中的每一个方法名在Mapper映射文件…

创建对象和继承的多种方式

1. 创建对象的多种方式&优缺点 1.1 工厂模式 function createPerson(name) {var o new Object();o.name name;o.getName function () {console.log(this.name);};return o; }var person1 createPerson(kevin);优点&#xff1a;简单&#xff1b; 缺点&#xff1a;对象…

Linux C/C++ 系统错误

在C中&#xff0c;如果调用了库函数&#xff0c;可以通过函数的返回值判断调用是否成功。其实还有一个整型的全局变量errno&#xff0c;存放了函数调用过程中产生的错误代码。 如果调用库函数失败&#xff0c;可以通过errno的值来查找原因 #include <errno.h>strerror(…

密码学——银行应用程序安全:理解和解决关键安全问题

1. 认证和访问控制 1.1 用户认证 银行应用程序通过Web服务器让客户访问其银行账户的操作历史。用户首先通过用户名和密码进行认证&#xff0c;然后才能查看其账户历史。这个过程涉及基本的认证和访问控制机制&#xff0c;确保只有合法用户可以访问其个人信息。 2. 安全执行环境…

时序数据库介绍及应用场景,C#实例

一&#xff0c;时序数据库介绍 时序数据库&#xff08;Time Series Database&#xff0c;TSDB&#xff09;是一种专门用于存储、处理和查询时间序列数据的数据库系统。以下是关于时序数据库的详细解释&#xff1a; 定义 时序数据库是一种优化用于摄取、处理和存储时间戳数据的…

回溯算法之电话号码字母组合

题目&#xff1a; 给定一个仅包含数字 2-9 的字符串&#xff0c;返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下&#xff08;与电话按键相同&#xff09;。注意 1 不对应任何字母。 示例 1&#xff1a; 输入&#xff1a;digits "2…

【MySQL】探索 MySQL 窗口函数(Window Functions)

缘分让我们相遇乱世以外 命运却要我们危难中相爱 也许未来遥远在光年之外 我愿守候未知里为你等待 我没想到为了你我能疯狂到 山崩海啸没有你根本不想逃 我的大脑为了你已经疯狂到 脉搏心跳没有你根本不重要 &#x1f3b5; 邓紫棋《光年之外》 在大数据分…

Java web应用性能分析之【jvisualvm远程连接云服务器】

Java web应用性能分析之【java进程问题分析概叙】-CSDN博客 Java web应用性能分析之【java进程问题分析工具】-CSDN博客 前面整理了java进程问题分析和分析工具&#xff0c;现在可以详细看看jvisualvm的使用&#xff0c;一般java进程都是部署云服务器&#xff0c;或者托管IDC机…

【MySQL】探索 MySQL 中的 CASE WHEN 表达式

缘分让我们相遇乱世以外 命运却要我们危难中相爱 也许未来遥远在光年之外 我愿守候未知里为你等待 我没想到为了你我能疯狂到 山崩海啸没有你根本不想逃 我的大脑为了你已经疯狂到 脉搏心跳没有你根本不重要 &#x1f3b5; 邓紫棋《光年之外》 在数据库查…

每周统计-20240531

用于测试程序的稳定性&#xff1a; 龙虎榜&#xff1a; 成交额&#xff1a; 封成比&#xff1a; 收盘前放量&#xff1a; 开盘抢筹&#xff1a; 封单额&#xff1a;

论文阅读:Correcting Motion Distortion for LIDAR HD-Map Localization

目录 概要 Motivation 整体架构流程 技术细节 小结 论文地址&#xff1a;http://arxiv.org/pdf/2308.13694.pdf 代码地址&#xff1a;https://github.com/mcdermatt/VICET 概要 激光雷达的畸变矫正是一个非常重要的工作。由于扫描式激光雷达传感器需要有限的时间来创建…

YOLOv5训练数据集的配置文件格式与使用技巧

文章目录 一 概述二 配置文件说明2.1 官方配置文件解析2.2 自定义数据集配置文件2.3 其他格式指定数据集路径2.4 多个数据集路径指定 三 总结注意事项 一 概述 本文档主要记录 YOLOv5 算法在进行模型训练前&#xff0c;关于加载数据集的配置文件的说明。 默认情况下&#xff…

RPC-----RCF

RPC RPC(Remote Procedure Call Protocol&#xff09;——远程过程调用协议。 RCF

linux命令:调试必备工具dmesg

在服务器上进行芯片调试时&#xff0c;我们会遇到各种各样的问题&#xff0c;很多问题与操作系统相关。此时就需要了解操作系统发生了哪些事件。 dmesg 是linux系统中用来打印或控制内核缓冲区内容的命令。这个环形缓冲区记录了系统启动以来发生的各种事件消息&#xff0c;包括…

ChatTTS改良版 - 高度逼真的人类情感文本生成语音工具(TTS)本地一键整合包下

先介绍下ChatTTS 和之前发布的 Fish Speech 类似&#xff0c;都是免费开源的文本生成语音的AI软件&#xff0c;但不同的是&#xff0c;ChatTTS测试下来&#xff0c;对于人类情感语调的模仿&#xff0c;应该是目前开源项目做的最好的&#xff0c;是一款高度接近人类情感、音色、…

MYSQL学习笔记-基础篇

一、SQL 1、DDL 2、DML 3、DQL 4、DCL 主要包括用户管理和权限控制 1&#xff09;DCL-管理用户 --查询用户 use mysql select * from user&#xff1b;--新增用户 CREATE USER 用户名主机名 IDENTIFIED BY 密码eg&#xff1a; create user hahalocalhost identied by 123; cre…

ppo-clip的本质以及它为什么是另一种ppo-KL-penalty

显然&#xff0c;clip在优势函数A>0且重采样比例过大时截断了上限&#xff0c;在优势函数A<0且重采样比例过小时也截断了负值的上限。 我以第一种情况解释clip的作用。 首先&#xff0c;所有选择的action都是RL中你希望增大概率的action。 当A>0时&#xff0c;说明这…