graph Conv介绍

2. Graph Conv 的作用

The multiplication of the adjacency matrix A \textbf{A} A with the feature matrix X \textbf{X} X in the GraphConv layer is a crucial operation in Graph Convolutional Networks (GCNs). This operation performs a localized, weighted aggregation of node features from each node’s neighbors. Here’s a detailed explanation of why this is done and what it accomplishes:

GraphConv 层中的邻接矩阵 A \textbf{A} A 与特征矩阵 X \textbf{X} X 的乘法是图卷积网络(GCN)中的关键操作。此操作对来自每个节点的邻居的节点特征执行局部加权聚合。以下详细解释了为什么这样做以及它实现了什么:

GraphConv 层中的邻接矩阵与节点特征矩阵的乘法执行 GCN 中邻居聚合的关键操作。

这允许每个节点根据其邻居的特征更新其特征,从而通过图有效地传播信息并捕获图的局部结构。
此操作与权重变换和可选的标准化相结合,使网络能够学习节点及其关系的有意义的表示。

Purpose of Adjacency Matrix Multiplication

  1. Neighbor Aggregation:

    • In a graph, the features of a node should be influenced by the features of its neighboring nodes. The adjacency matrix A \textbf{A} A encodes the connections between nodes, where A i j \textbf{A}_{ij} Aij is non-zero if there is an edge between node i i i and node j j j.在图中,节点的特征应该受到其相邻节点的特征的影响。邻接矩阵 A \textbf{A} A 对节点之间的连接进行编码,如果节点 i i i 和节点 j j j 不为零> .
    • When we multiply A \textbf{A} A with X \textbf{X} X, each node’s feature vector is updated to be a weighted sum of the feature vectors of its neighbors.当我们将 A \textbf{A} A X \textbf{X} X 相乘时,每个节点的特征向量都会更新为其邻居特征向量的加权和。
  2. Information Propagation:

    • This operation allows information to propagate through the graph, enabling each node to gather information from its local neighborhood.此操作允许信息在图中传播,使每个节点能够从其本地邻居收集信息。
    • This is essential for capturing the local structure and feature distribution within the graph.这对于捕获图中的局部结构和特征分布至关重要。

Mathematical Interpretation

我们来分解一下 GraphConv 层的操作:

  1. Matrix Multiplication:

    • The first operation Y = A ⋅ X \textbf{Y} = \textbf{A} \cdot \textbf{X} Y=AX where Y \textbf{Y} Y is the intermediate result, A \textbf{A} A is the adjacency matrix, and X \textbf{X} X is the input feature matrix.第一个操作 Y = A ⋅ X \textbf{Y} = \textbf{A} \cdot \textbf{X} Y=AX ,其中 Y \textbf{Y} Y 是中间结果, A \textbf{A} A 是邻接矩阵, X \textbf{X} X 是输入特征矩阵。
    • For node i i i, the feature vector Y i \textbf{Y}_i Yi is computed as: 对于节点 i i i ,特征向量 Y i \textbf{Y}_i Yi 计算如下: Y i = ∑ j ∈ N ( i ) A i j X j \textbf{Y}_i = \sum_{j \in \mathcal{N}(i)} \textbf{A}_{ij} \textbf{X}_j Yi=jN(i)AijXj where N ( i ) \mathcal{N}(i) N(i) denotes the neighbors of node i i i including itself (if self-loops are added). 其中 N ( i ) \mathcal{N}(i) N(i) 表示节点 i i i 的邻居,包括其自身(如果添加了自循环)。
  2. Self-Loop Addition:

    • If add_self is True, X \textbf{X} X is added to Y \textbf{Y} Y. This ensures that the node’s own features are also included in the aggregation: 如果 add_selfTrue ,则 X \textbf{X} X 将添加到 Y \textbf{Y} Y 中。这确保了节点自身的特征也包含在聚合中: Y = A ⋅ X + X \textbf{Y} = \textbf{A} \cdot \textbf{X} + \textbf{X} Y=AX+X
  3. Weight Transformation:

    • The intermediate result Y \textbf{Y} Y is then transformed by a weight matrix W \textbf{W} W: 然后将中间结果 Y \textbf{Y} Y 通过权重矩阵 W \textbf{W} W 进行转换: Z = Y ⋅ W \textbf{Z} = \textbf{Y} \cdot \textbf{W} Z=YW
    • This operation applies a linear transformation to the aggregated features, which is essential for learning the appropriate feature representation.此操作对聚合特征应用线性变换,这对于学习适当的特征表示至关重要。
  4. Bias Addition:

    • If a bias term is included, it is added to Z \textbf{Z} Z: 如果包含偏差项,则会将其添加到 Z \textbf{Z} Z Z = Z + b \textbf{Z} = \textbf{Z} + \textbf{b} Z=Z+b
  5. Normalization:

    • If normalize_embedding is True, the features are normalized: 如果 normalize_embeddingTrue ,则特征被标准化: Z = Z ∥ Z ∥ 2 \textbf{Z} = \frac{\textbf{Z}}{\|\textbf{Z}\|_2} Z=Z2Z
    • This ensures that the feature vectors have unit length, which can be useful in certain applications.这确保了特征向量具有单位长度,这在某些应用中很有用。

Example Code Walkthrough

以下是 GraphConv 类的简化演练:

class GraphConv(nn.Module):def __init__(self, input_dim, output_dim, add_self=False, normalize_embedding=False,dropout=0.0, bias=True):super(GraphConv, self).__init__()self.add_self = add_selfself.dropout = dropoutif dropout > 0.001:self.dropout_layer = nn.Dropout(p=dropout)self.normalize_embedding = normalize_embeddingself.input_dim = input_dimself.output_dim = output_dimdevice = 'cuda' if torch.cuda.is_available() else 'cpu'self.weight = nn.Parameter(torch.FloatTensor(input_dim, output_dim)).to(device)if bias:self.bias = nn.Parameter(torch.FloatTensor(output_dim).to(device))else:self.bias = Nonedef forward(self, x, adj):if self.dropout > 0.001:x = self.dropout_layer(x)# Matrix multiplication with adjacency matrixy = torch.matmul(adj, x)# Optionally add self-loopif self.add_self:y += x# Linear transformationy = torch.matmul(y, self.weight)# Add bias if presentif self.bias is not None:y = y + self.bias# Normalize if requiredif self.normalize_embedding:y = F.normalize(y, p=2, dim=2)return y

2. GCNConv

2.0 code

class GCNConv(MessagePassing):r"""The graph convolutional operator from the `"Semi-supervisedClassification with Graph Convolutional Networks"<https://arxiv.org/abs/1609.02907>`_ paper... math::\mathbf{X}^{\prime} = \mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}}\mathbf{\hat{D}}^{-1/2} \mathbf{X} \mathbf{\Theta},where :math:`\mathbf{\hat{A}} = \mathbf{A} + \mathbf{I}` denotes theadjacency matrix with inserted self-loops and:math:`\hat{D}_{ii} = \sum_{j=0} \hat{A}_{ij}` its diagonal degree matrix.The adjacency matrix can include other values than :obj:`1` representingedge weights via the optional :obj:`edge_weight` tensor.Its node-wise formulation is given by:.. math::\mathbf{x}^{\prime}_i = \mathbf{\Theta}^{\top} \sum_{j \in\mathcal{N}(i) \cup \{ i \}} \frac{e_{j,i}}{\sqrt{\hat{d}_j\hat{d}_i}} \mathbf{x}_jwith :math:`\hat{d}_i = 1 + \sum_{j \in \mathcal{N}(i)} e_{j,i}`, where:math:`e_{j,i}` denotes the edge weight from source node :obj:`j` to targetnode :obj:`i` (default: :obj:`1.0`)Args:in_channels (int): Size of each input sample, or :obj:`-1` to derivethe size from the first input(s) to the forward method.out_channels (int): Size of each output sample.improved (bool, optional): If set to :obj:`True`, the layer computes:math:`\mathbf{\hat{A}}` as :math:`\mathbf{A} + 2\mathbf{I}`.(default: :obj:`False`)cached (bool, optional): If set to :obj:`True`, the layer will cachethe computation of :math:`\mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}}\mathbf{\hat{D}}^{-1/2}` on first execution, and will use thecached version for further executions.This parameter should only be set to :obj:`True` in transductivelearning scenarios. (default: :obj:`False`)add_self_loops (bool, optional): If set to :obj:`False`, will not addself-loops to the input graph. By default, self-loops will be addedin case :obj:`normalize` is set to :obj:`True`, and not addedotherwise. (default: :obj:`None`)normalize (bool, optional): Whether to add self-loops and computesymmetric normalization coefficients on-the-fly.(default: :obj:`True`)bias (bool, optional): If set to :obj:`False`, the layer will not learnan additive bias. (default: :obj:`True`)**kwargs (optional): Additional arguments of:class:`torch_geometric.nn.conv.MessagePassing`.Shapes:- **input:**node features :math:`(|\mathcal{V}|, F_{in})`,edge indices :math:`(2, |\mathcal{E}|)`or sparse matrix :math:`(|\mathcal{V}|, |\mathcal{V}|)`,edge weights :math:`(|\mathcal{E}|)` *(optional)*- **output:** node features :math:`(|\mathcal{V}|, F_{out})`"""_cached_edge_index: Optional[OptPairTensor]_cached_adj_t: Optional[SparseTensor]def __init__(self,in_channels: int,out_channels: int,improved: bool = False,cached: bool = False,add_self_loops: Optional[bool] = None,normalize: bool = True,bias: bool = True,**kwargs,):kwargs.setdefault('aggr', 'add')super().__init__(**kwargs)if add_self_loops is None:add_self_loops = normalizeif add_self_loops and not normalize:raise ValueError(f"'{self.__class__.__name__}' does not support "f"adding self-loops to the graph when no "f"on-the-fly normalization is applied")self.in_channels = in_channelsself.out_channels = out_channelsself.improved = improvedself.cached = cachedself.add_self_loops = add_self_loopsself.normalize = normalizeself._cached_edge_index = Noneself._cached_adj_t = Noneself.lin = Linear(in_channels, out_channels, bias=False,weight_initializer='glorot')if bias:self.bias = Parameter(torch.empty(out_channels))else:self.register_parameter('bias', None)self.reset_parameters()def reset_parameters(self):super().reset_parameters()self.lin.reset_parameters()zeros(self.bias)self._cached_edge_index = Noneself._cached_adj_t = Nonedef forward(self, x: Tensor, edge_index: Adj,edge_weight: OptTensor = None) -> Tensor:if isinstance(x, (tuple, list)):raise ValueError(f"'{self.__class__.__name__}' received a tuple "f"of node features as input while this layer "f"does not support bipartite message passing. "f"Please try other layers such as 'SAGEConv' or "f"'GraphConv' instead")if self.normalize:if isinstance(edge_index, Tensor):cache = self._cached_edge_indexif cache is None:edge_index, edge_weight = gcn_norm(  # yapf: disableedge_index, edge_weight, x.size(self.node_dim),self.improved, self.add_self_loops, self.flow, x.dtype)if self.cached:self._cached_edge_index = (edge_index, edge_weight)else:edge_index, edge_weight = cache[0], cache[1]elif isinstance(edge_index, SparseTensor):cache = self._cached_adj_tif cache is None:edge_index = gcn_norm(  # yapf: disableedge_index, edge_weight, x.size(self.node_dim),self.improved, self.add_self_loops, self.flow, x.dtype)if self.cached:self._cached_adj_t = edge_indexelse:edge_index = cachex = self.lin(x)# propagate_type: (x: Tensor, edge_weight: OptTensor)out = self.propagate(edge_index, x=x, edge_weight=edge_weight)if self.bias is not None:out = out + self.biasreturn outdef message(self, x_j: Tensor, edge_weight: OptTensor) -> Tensor:return x_j if edge_weight is None else edge_weight.view(-1, 1) * x_jdef message_and_aggregate(self, adj_t: Adj, x: Tensor) -> Tensor:return spmm(adj_t, x, reduce=self.aggr)

2.1

The GCNConv class implements the graph convolutional operator described in the paper “Semi-supervised Classification with Graph Convolutional Networks” by Kipf and Welling. This operator is designed to perform convolution operations on graph-structured data.

Attributes and Their Roles

  1. in_channels:

    • Role: Size of each input feature vector.
    • Purpose: Determines the dimensionality of the input node features.
  2. out_channels:

    • Role: Size of each output feature vector.
    • Purpose: Determines the dimensionality of the output node features after the convolution operation.
  3. improved:

    • Role: Indicates whether to use an improved version of the adjacency matrix.
    • Purpose: If True, the adjacency matrix is modified to include double self-loops (A + 2I), which can improve performance in certain scenarios.
  4. cached:

    • Role: Indicates whether to cache the normalized adjacency matrix.
    • Purpose: Caches the normalization of the adjacency matrix for efficiency, particularly in transductive learning scenarios.
  5. add_self_loops:

    • Role: Indicates whether to add self-loops to the graph.
    • Purpose: Ensures that each node’s own features are included in the convolution operation. Self-loops are added if normalization is enabled.
  6. normalize:

    • Role: Indicates whether to normalize the adjacency matrix.
    • Purpose: Normalizes the adjacency matrix using symmetric normalization, which is crucial for the GCN operator to perform correctly.
  7. bias:

    • Role: Indicates whether to include a learnable bias in the layer.
    • Purpose: Adds a bias term to the output of the linear transformation.
  8. lin:

    • Role: Linear transformation applied to the input node features.
    • Purpose: Transforms the input node features to the desired output dimensionality.
  9. _cached_edge_index and _cached_adj_t:

    • Role: Caches the normalized adjacency matrix and its corresponding edge index.
    • Purpose: Avoids recomputing the normalization in subsequent forward passes, improving efficiency.

Operation Mechanism of forward

The forward method processes the input graph data and applies the GCN convolution operation. Here’s a detailed explanation of each step:

  1. Check for Tuple Input:

    • If the input x is a tuple or list, an error is raised because this layer does not support bipartite message passing.
  2. Normalization:

    • If normalize is True, the adjacency matrix (represented by edge_index) and the edge weights are normalized.
    • If edge_index is a tensor, it checks the cache. If not cached, it computes the normalized adjacency matrix using gcn_norm and caches it if cached is True.
    • If edge_index is a SparseTensor, a similar caching mechanism is applied.
  3. Linear Transformation:

    • Applies the linear transformation to the input features x using self.lin(x).
  4. Message Passing:

    • Calls self.propagate to perform message passing. This function aggregates messages from neighboring nodes according to the normalized adjacency matrix and edge weights.
    • The message method computes the messages to be passed to each node. If edge weights are provided, they are used to scale the messages.
  5. Bias Addition:

    • If a bias term is included (self.bias is not None), it is added to the output features.
  6. Return Output:

    • Returns the final output node features after the convolution operation.

Example Walkthrough of forward Method

Here’s a step-by-step walkthrough with a hypothetical input:

  1. Inputs:

    • x: Tensor of shape (num_nodes, in_channels), representing node features.
    • edge_index: Tensor of shape (2, num_edges), representing the graph’s adjacency list.
    • edge_weight: Optional tensor of shape (num_edges,), representing edge weights.
  2. Normalization:

    • If normalization is enabled and not cached, gcn_norm computes the normalized adjacency matrix and edge weights.
    • For example, gcn_norm might convert the adjacency matrix A to D^{-1/2} A D^{-1/2} where D is the degree matrix.
  3. Linear Transformation:

    • Applies a linear transformation to x, resulting in a tensor of shape (num_nodes, out_channels).
  4. Message Passing:

    • Calls self.propagate with the normalized adjacency matrix and transformed features.
    • The message method computes the weighted sum of neighboring node features for each node.
  5. Bias Addition:

    • Adds the bias term (if present) to the output features.
  6. Output:

    • Returns the updated node features, which now incorporate information from neighboring nodes.

By following these steps, the GCNConv class effectively performs a graph convolution operation, updating each node’s features based on its neighbors’ features in a normalized manner.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/19786.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

node依赖安装的bug汇总

1.npm仓库 首先要获取npm仓库的地址&#xff1a; registryhttp://11.11.111.1:1111/abcdefg/adsfadsf 类似这种的地址 然后设置npm仓库&#xff1a; npm config set registryhttp://11.11.111.1:1111/abcdefg/adsfadsf (地址要带等号) 接着安装依赖&#xff1a; npm i…

Golang中的 defer 关键字和Python中的上下文管理with关键字

defer&#xff0c;中文意思是&#xff1a;推迟 常用用于关闭文件操作&#xff0c;简而言之&#xff0c;就是try/finally的一种替代方案 使用示例 package mainimport "fmt"func main() {defer fmt.Println("执行延迟的函数")fmt.Println("执行外层…

【计算Nei遗传距离】

报错 Warning message: In adegenet::df2genind(t(x), sep sep, ...) : Markers with no scored alleles have been removed 原因&#xff1a; 直接用plink转换为VCF&#xff0c;丢失了等位基因分型&#xff08;REF ALT&#xff09; &#xff08;plink编码的规则&…

Centos7对比Ubuntu一些常用操作差异点

Centos7对比Ubuntu一些常用操作差异点 CentOS 7将于2024年6月30日停止维护&#xff0c;CentOS8已经转为Rhel的上游项目。同时Centos7的软件仓库中&#xff0c;部分软件版本较老。后续使用过程中可以考虑切换到Ubuntu。 下面总结了一些两个系统的常见差异点&#xff0c;包括软…

优选算法一:双指针算法与练习(移动0)

目录 双指针算法讲解 移动零 双指针算法讲解 常见的双指针有两种形式&#xff0c;一种是对撞指针&#xff0c;一种是快慢指针。 对撞指针&#xff1a;一般用于顺序结构中&#xff0c;也称左右指针。 对撞指针从两端向中间移动。一个指针从最左端开始&#xff0c;另一个从最…

【Linux】进程(2):进程状态

大家好&#xff0c;我是苏貝&#xff0c;本篇博客带大家了解Linux进程&#xff08;1&#xff09;&#xff0c;如果你觉得我写的还不错的话&#xff0c;可以给我一个赞&#x1f44d;吗&#xff0c;感谢❤️ 目录 &#xff08;A&#xff09;R/S/D/T/t状态1. R&#xff1a;程序运…

在Spring Boot中集成H2数据库:完整指南

引言 Spring Boot是一个简化企业级Java应用程序开发的强大框架。H2数据库是一个轻量级的、开源的SQL数据库&#xff0c;非常适合用于开发和测试。本文将指导您如何在Spring Boot应用程序中集成H2数据库&#xff0c;并探索一些高级配置选项。 依赖关系 首先&#xff0c;我们需…

windows打开工程文件是顺序读写吗

在 Windows 操作系统中&#xff0c;打开和读写工程文件的过程可以是顺序读写&#xff0c;也可以是随机读写&#xff0c;具体取决于使用的软件和文件的性质。以下是一些详细解释&#xff1a; 顺序读写 顺序读写&#xff08;sequential access&#xff09;是指按文件中数据的顺…

C/C++覆盖率收集

linux下C/C++代码覆盖度检查工具:BullseyeCoverage 主要作用: a.识别在测试过程中没有完全执行的代码; b.获取测试完整性相关的一些度量,来帮助判断是否已经充分测试。 BullseyeCoverage 使用步骤一般是: 1)安装BullseyeCoverage

ThreadLocal详解,与 HashMap 对比

ThreadLocal原理&#xff0c;使用注意事项&#xff0c;解决哈希冲突方式->和HashMap对比 ThreadLocal 原理&#xff1a; ThreadLocal 是 Java 中的一个线程级别的变量&#xff0c;它允许您在不同线程之间存储和访问相同变量的不同副本&#xff0c;每个线程都拥有自己的副本&…

单片机的自动化编程语言:深度探索与未来展望

单片机的自动化编程语言&#xff1a;深度探索与未来展望 单片机作为现代电子设备的核心控制单元&#xff0c;其自动化编程语言的发展与应用&#xff0c;对提升设备性能、简化编程流程具有重大意义。本文将从四个方面、五个方面、六个方面和七个方面&#xff0c;对单片机的自动…

Day-04python模块

一、模块 1-1 Python 自带模块 Json模块 处理json数据 {"key":"value"} json不是字典 本质是一个有引号的字符串数据 json注意点 {} 中的数据是字符串引号必须是双引号 使用json模块可以实现将json转为字典&#xff0c;使用字典的方法操作数据 。 或者将…

社交媒体数据恢复:最右

第一步&#xff1a;确认数据丢失原因 请确定您是因为误删、设备损坏还是其他原因导致“最右”中的数据丢失。这将有助于您更好地了解需要采取的恢复措施。 第二步&#xff1a;尝试从备份中恢复数据 如果您有定期备份的习惯&#xff0c;请尝试从备份中恢复丢失的数据。备份文…

Springboot JVM监控 通过Promethus

Springboot内置了对Prometheus得支持&#xff0c;可以监测得点有&#xff1a; JVM各指标参数&#xff08;GC&#xff0c;堆&#xff0c;非堆等&#xff09;接口调用次数&#xff0c;延时系统内存&#xff0c;IO&#xff0c;CPU使用率 部署Prometheus和Grafana 准备一台2核4G…

局域网测速工具详解

使用好局域网测速工具可以帮助我们&#xff1a; 1. 网络性能评估 - 确定带宽&#xff1a;测量网络的实际上传和下载速度&#xff0c;以确定是否满足业务需求。 - 检测延迟和抖动&#xff1a;评估网络传输中的延迟和抖动&#xff0c;确保实时应用&#xff08;如VoIP、视频会议&a…

问题排查|记录一次基于mymuduo库开发的服务器错误排查(段错误--Segmentation fault (core dumped))

问题记录&#xff1a; 在刚完成mymuduo库之后&#xff0c;写了一个简单的测试服务器&#xff0c; 但是在服务器运行后直接报错&#xff1a; cherryhcss-ecs-4995:~/mymuduo/example$ ./testserver Segmentation fault (core dumped)出现多错误这通常意味着程序试图访问其内存空…

解决Mybatisplus中没有Db类静态工具的方案--提高版本

方案&#xff1a;将两个的版本都提高即可解决 Mybatis—plus的依赖文件 <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.5.3</version></dependency><!-- ge…

Linux module参数传递

一、Linux Module参数传递 在C 语言中&#xff0c;可以在main函数利用argc、argv获取用户的输入&#xff0c;Linux驱动同样可以传递参数&#xff0c;下面简要介绍参数宏的使用方法 利用下面宏定义的参数可以在下面路径找到 /sys/module/xxxxx/parameters/ 1、module_param() …

STM32自己从零开始实操03:输出部分原理图

一、继电器电路 1.1指路 延续使用 JZC-33F-012-ZS3 继电器&#xff0c;设计出以小电流撬动大电流的继电器电路。 &#xff08;提示&#xff09;电路需要包含&#xff1a;三极管开关电路、续流二极管、滤波电容、指示灯、输出部分。 1.2数据手册重要信息提炼 联系排列&…

手写HTML字符串解析成对应的 AST语法树

先看效果 展示如下&#xff1a; HTML模版 转成ast语法树后 在学习之前&#xff0c;我们需要了解这么一个问题&#xff0c;为什么要将HTML字符串解析成对应的 AST语法树。 为什么&#xff1f; 语法分析&#xff1a;HTML字符串是一种标记语言&#xff0c;其中包含了大量的标签…