拉格朗日插值法的推导

1、插值的基本定义
  设函数 y = f ( x ) y=f(x) y=f(x)在区间 [ a , b ] [a,b] [a,b]上有定义,且已知它在 n + 1 n+1 n+1个互异点 a ≤ x 0 < x 1 < . . . < x n ≤ b a\leq x_0<x_1<...<x_n\leq b ax0<x1<...<xnb上的函数值 y 0 , y 1 , . . . , y n y_0,y_1,...,y_n y0,y1,...,yn,若存在一个简单函数 p ( x ) p(x) p(x),使得
p ( x i ) = y i , i = 0 , 1 , 2 , . . , n p(x_i)=y_i,i=0,1,2,..,n p(xi)=yi,i=0,1,2,..,n
  成立,则称 p ( x ) p(x) p(x) f ( x ) f(x) f(x)插值函数。显然,除上述已知 n + 1 n+1 n+1个互异点外,在其他位置上,插值函数 p ( x ) p(x) p(x)和原函数 f ( x ) f(x) f(x)之间并没有明确关系,所以插值总是有误差的。不过,若对原函数和插值函数增加一定的约束,则可能使两者保持一致。下面讨论代数插值情况。
  设 p ( x ) p(x) p(x)是次数不超过 n n n的代数多项式,即
p ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 (1) p(x)=a_n x^n+a_{n-1}x^{n-1}+...+a_1 x+a_0 \tag{1} p(x)=anxn+an1xn1+...+a1x+a0(1)
该函数满足 p ( x i ) = y i p(x_i)=y_i p(xi)=yi,则称 p ( x ) p(x) p(x)为原函数 f ( x ) f(x) f(x) n n n次代数插值多项式。该种插值称为代数插值,代数插值的几何意义,其实就是找一条过上述 n + 1 n+1 n+1个互异点的 n n n次代数曲线来近似表示曲线 f ( x ) f(x) f(x)
  可以证明,上述 n n n次插值函数有且只有一个。显然,将 p ( x i ) = y i p(x_i)=y_i p(xi)=yi的条件代入(1)式,得到下面的 n + 1 n+1 n+1阶线性方程组
{ a 0 + a 1 x 0 + a 2 x 0 2 + . . . + a n x 0 n = y 0 a 0 + a 1 x 1 + a 2 x 1 2 + . . . + a n x 1 n = y 1 ⋮ a 0 + a 1 x n + a 2 x n 2 + . . . + a n x n n = y n → [ 1 x 0 . . . x 0 n 1 x 1 . . . x 1 n ⋮ ⋮ . . . ⋮ 1 x n . . . x n n ] [ a 0 a 1 ⋮ a n ] = [ y 0 y 1 ⋮ y n ] \left\{\begin{matrix} a_0+a_1 x_0+a_2 x_0^2+...+a_nx_0^n=y_0 \\ a_0+a_1 x_1+a_2 x_1^2+...+a_nx_1^n=y_1 \\ \vdots \\ a_0+a_1 x_n+a_2 x_n^2+...+a_nx_n^n=y_n \\ \end{matrix}\right. \rightarrow \left[ \begin{matrix} 1 & x_0 & ... & x_0^n \\ 1 & x_1 & ... & x_1^n \\ \vdots & \vdots & ... & \vdots \\ 1 & x_n & ... & x_n^n \\ \end{matrix}\right] \left[ \begin{matrix} a_0 \\ a_1 \\ \vdots \\ a^n \\ \end{matrix}\right] = \left[ \begin{matrix} y_0 \\ y_1 \\ \vdots \\ y^n \\ \end{matrix}\right] a0+a1x0+a2x02+...+anx0n=y0a0+a1x1+a2x12+...+anx1n=y1a0+a1xn+a2xn2+...+anxnn=yn 111x0x1xn............x0nx1nxnn a0a1an = y0y1yn
  显然,该线性方程组的行列式为
∣ 1 x 0 . . . x 0 n 1 x 1 . . . x 1 n ⋮ ⋮ . . . ⋮ 1 x n . . . x n n ∣ = ∏ i = 1 n ∏ j = 0 i − 1 ( x i − x j ) \begin{vmatrix} 1 & x_0 & ... & x_0^n \\ 1 & x_1 & ... & x_1^n \\ \vdots & \vdots & ... & \vdots \\ 1 & x_n & ... & x_n^n \\ \end{vmatrix} = \prod_{i=1}^n \prod_{j=0}^{i-1}(x_i-x_j) 111x0x1xn............x0nx1nxnn =i=1nj=0i1(xixj)
 显然,由于 x i x_i xi互不相同,所以上式不为0,所以方程系数 a 0 , . . . , a n a_0,...,a_n a0,...,an可被唯一确,即该插值多项式有且只有一个。
  插值问题的关键是求解插值多项式,显然利用上述线性方程组,可直接求得多项式系数的最小二乘解。但计算过程涉及矩阵求逆,计算量较大,后面将探究新的计算方法。

2、拉格朗日插值法

2.1、线性插值情况
  我们从一次多项式开始逐步推导。此时有 p ( x i ) = y i , ( i = 0 , 1 ) p(x_i)=y_i,(i=0,1) p(xi)=yi,(i=0,1),显然,可过这两个点作一条直线,目的是用直线 p ( x ) p(x) p(x)来近似表示原函数 f ( x ) f(x) f(x),这种插值称为线性插值。该直线的两点式方程可表示为
p ( x ) = y 0 x − x 1 x 0 − x 1 + y 1 x − x 0 x 1 − x 0 = l 0 ( x ) y 0 + l 1 ( x ) y 1 = ∑ k = 0 1 l k ( x ) y k p(x)=y_0 \frac{x-x_1}{x_0-x_1}+y_1 \frac{x-x_0}{x_1-x_0}=l_0(x)y_0+l_1(x)y_1=\sum_{k=0}^1 l_k(x)y_k p(x)=y0x0x1xx1+y1x1x0xx0=l0(x)y0+l1(x)y1=k=01lk(x)yk
  其中, l 0 ( x ) = x − x 1 x 0 − x 1 l_0(x)=\frac{x-x_1}{x_0-x_1} l0(x)=x0x1xx1称为点 x 0 x_0 x0的一次插值基函数, l 1 ( x ) = x − x 0 x 1 − x 0 l_1(x)=\frac{x-x_0}{x_1-x_0} l1(x)=x1x0xx0称为点 x 1 x_1 x1的一次插值基函数, 显然 p ( x ) p(x) p(x) l 0 ( x ) l_0(x) l0(x) l 1 ( x ) l_1(x) l1(x)的线性组合。另外,上述插值基函数满足
l j ( x i ) = δ i j = { 1 , i = j 0 , i ≠ j (2) l_j(x_i)=\delta_{ij}=\left\{\begin{matrix} 1,i=j \\ 0,i\neq j \end{matrix}\right. \tag{2} lj(xi)=δij={1,i=j0,i=j(2)
在这里插入图片描述

图1. 线性插值示意图

2.2、二次插值情况
  此时已知 f ( x ) f(x) f(x)上面三个互异点 ( x i , y i ) , i = 0 , 1 , 2 (x_i,y_i),i=0,1,2 (xi,yi),i=0,1,2,要求构造一个不超过2次的代数多项式 p ( x ) = a x 2 + b x + c p(x)=ax^2+bx+c p(x)=ax2+bx+c,满足 p ( x i ) = y i , ( i = 0 , 1 , 2 ) p(x_i)=y_i,(i=0,1,2) p(xi)=yi,(i=0,1,2)。为便于求解,我们可将 p ( x ) p(x) p(x)重新整理为 p ( x ) = A ( x − x 1 ) ( x − x 2 ) + B ( x − x 0 ) ( x − x 2 ) + C ( x − x 0 ) ( x − x 1 ) p(x)=A(x-x_1)(x-x_2)+B(x-x_0)(x-x_2)+C(x-x_0)(x-x_1) p(x)=A(xx1)(xx2)+B(xx0)(xx2)+C(xx0)(xx1),将三个已知点坐标代入,可求得
A = y 0 ( x 0 − x 1 ) ( x 0 − x 2 ) B = y 1 ( x 1 − x 0 ) ( x 1 − x 2 ) C = y 2 ( x 2 − x 0 ) ( x 2 − x 1 ) A=\frac{y_0}{(x_0-x_1)(x_0-x_2)}\\ B=\frac{y_1}{(x_1-x_0)(x_1-x_2)}\\ C=\frac{y_2}{(x_2-x_0)(x_2-x_1)} A=(x0x1)(x0x2)y0B=(x1x0)(x1x2)y1C=(x2x0)(x2x1)y2
此时可得到插值函数为
p ( x ) = ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) y 0 + ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) y 1 + ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) y 2 = l 0 ( x ) y 0 + l 1 ( x ) y 1 + l 2 ( x ) y 2 = ∑ j = 0 2 l j ( x ) y j p(x)=\frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}y_0+\frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}y_1+\frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}y_2\\ =l_0(x)y_0+l_1(x)y_1+l_2(x)y_2=\sum_{j=0}^2 l_j(x)y_j p(x)=(x0x1)(x0x2)(xx1)(xx2)y0+(x1x0)(x1x2)(xx0)(xx2)y1+(x2x0)(x2x1)(xx0)(xx1)y2=l0(x)y0+l1(x)y1+l2(x)y2=j=02lj(x)yj
其中, l j ( x ) = ∏ i = 0 , i ≠ j 2 x − x i x j − x i l_j(x)=\prod_{i=0,i\neq j}^2 \frac{x-x_i}{x_j-x_i} lj(x)=i=0,i=j2xjxixxi,显然 l j ( x ) l_j(x) lj(x)同样具有(2)式所示的性质。该插值称为二次插值或抛物线插值。

2.3、n次插值情况
  此时,仿照二次插值的构造方法,令
p ( x ) = l 0 ( x ) y 0 + . . . + l n ( x ) y n = ∑ j = 0 n l j ( x ) y j p(x)=l_0(x)y_0+...+l_n(x)y_n=\sum_{j=0}^n l_j(x)y_j p(x)=l0(x)y0+...+ln(x)yn=j=0nlj(x)yj
其中, l j ( x ) l_j(x) lj(x) n n n次多项式,称为插值基函数,它满足条件
l j ( x i ) = δ i j = { 1 , i = j 0 , i ≠ j , ( i , j = 0 , 1 , . . . , n ) (2) l_j(x_i)=\delta_{ij}=\left\{\begin{matrix} 1,i=j \\ 0,i\neq j \end{matrix}\right. ,(i,j=0,1,...,n) \tag{2} lj(xi)=δij={1,i=j0,i=j(i,j=0,1,...,n)(2)
  显然,此时问题归结为构造满足条件的 n n n次多项式 l j ( x ) l_j(x) lj(x)。事实上,由 l j ( x ) = 0 , i ≠ j l_j(x)=0,i\neq j lj(x)=0,i=j,知道 x 0 , x 1 , . . . , x j − 1 , x j + 1 , . . . , x n x_0,x_1,...,x_{j-1},x_{j+1},...,x_n x0,x1,...,xj1,xj+1,...,xn都是 l j ( x ) l_j(x) lj(x)的零点,所以可设 l j ( x ) = A ( x − x 0 ) ( x − x 1 ) . . . . ( x − x j − 1 ) ( x − x j + 1 ) . . . ( x − x n ) l_j(x)=A(x-x_0)(x-x_1)....(x-x_{j-1})(x-x_{j+1})...(x-x_n) lj(x)=A(xx0)(xx1)....(xxj1)(xxj+1)...(xxn)。其中, A A A为待定系数,由条件 l j ( x j ) = 1 l_j(x_j)=1 lj(xj)=1,可确定 A = 1 ( x j − x 0 ) ( x j − x 1 ) . . . ( x j − x j − 1 ) ( x j − x j + 1 ) . . . ( x j − x n ) A=\frac{1}{(x_j-x_0)(x_j-x_1)...(x_j-x_{j-1})(x_j-x_{j+1})...(x_j-x_n)} A=(xjx0)(xjx1)...(xjxj1)(xjxj+1)...(xjxn)1,所以
l j ( x ) = ( x − x 0 ) . . . ( x − x j − 1 ) ( x − x j + 1 ) . . . ( x − x n ) ( x j − x 0 ) . . . ( x j − x j − 1 ) ( x j − x j + 1 ) . . . ( x j − x n ) = ∏ i = 0 , i ≠ j n x − x i x j − x i l_j(x)=\frac{(x-x_0)...(x-x_{j-1})(x-x_{j+1})...(x-x_n)}{(x_j-x_0)...(x_j-x_{j-1})(x_j-x_{j+1})...(x_j-x_n)}=\prod_{i=0,i\neq j}^n \frac{x-x_i}{x_j-x_i} lj(x)=(xjx0)...(xjxj1)(xjxj+1)...(xjxn)(xx0)...(xxj1)(xxj+1)...(xxn)=i=0,i=jnxjxixxi
  由此可得
p ( x ) = ∑ j = 0 n l j ( x ) y j = ∑ j = 0 n y j ( ∏ i = 0 , i ≠ j n x − x i x j − x i ) (3) p(x)=\sum_{j=0}^n l_j(x)y_j=\sum_{j=0}^n y_j(\prod_{i=0,i\neq j}^n \frac{x-x_i}{x_j-x_i})\tag{3} p(x)=j=0nlj(x)yj=j=0nyj(i=0,i=jnxjxixxi)(3)
我们称形如(3)式的插值公式为拉格朗日插值。

未完待续。。。。
未完待续。。。。
未完待续。。。。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/18546.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql-通过binlog日志复制主从同步

主从复制binlog日志方式 量大的时候使用GTID效率更高&#xff0c;维护起来比较麻烦 有了主从同步也要做备份(双保险&#xff0c;本地有一份&#xff0c;主从同步也有一份 ) 1、准备环境两台机器&#xff0c;关闭防火墙和selinux。---两台机器环境必须一致。时间也得一致 10.…

【Unity脚本】Unity中如何按类型查找游戏对象(GameObject)

【知识链】Unity -> 脚本系统 -> 访问游戏对象 -> 按类型访问游戏对象摘要&#xff1a;本文介绍了Unity中按类型查找游戏对象&#xff08;GameObject&#xff09;的五种方法&#xff0c;并提出了使用这些方法的最佳实践。 本文目录 一、访问游戏对象的方法二、如何按…

python os模块库

os模块 os模块是python的内置模块&#xff0c;是对目录和文件的操作 使用时需要导包 import os os用法 方法描述os.getcwd()展示当前路径os.listdir()展示当前目录下载文件os.chdir()改变当前目录路径os.mkdir()创建目录os.rmdir()删除指定路径的目录&#xff0c;必须得目录…

【个人博客搭建】(20)获取操作用户信息(IHttpContextAccessor)

IHttpContextAccessor在ASP.NET Core中扮演着至关重要的角色。它为开发者提供了一种方便的方式来访问和操作HttpContext对象&#xff0c;从而允许在整个应用程序中轻松地管理和使用HTTP请求和响应的相关信息。下面将深入探讨IHttpContextAccessor的作用、使用方法以及如何通过它…

【区分vue2和vue3下的element UI lauout布局,分别详细介绍属性,事件,方法如何使用,并举例】

首先&#xff0c;需要澄清一点&#xff1a;Element UI 是基于 Vue 2 的组件库&#xff0c;它并没有直接为 Vue 3 提供官方支持。但是&#xff0c;有一些社区版本的 Element UI 试图兼容 Vue 3&#xff0c;比如 Element Plus。以下我会分别介绍 Element UI&#xff08;基于 Vue …

[ue5]建模场景学习笔记(1)——混合材质

卷首&#xff1a;这部分会记录建模场景等相关学习内容&#xff0c;与ue引擎学习笔记不同的是&#xff0c;可能会略过一些基础内容&#xff0c;因为部分知识在blender中已经学习过了&#xff0c;不再继续记录。 1.需求分析&#xff1a; 想构建一个山地的场景&#xff0c;在ue5中…

[RK3588-Android12] 关于EDP屏外设为Panel,不支持HPD的配置

问题描述 直接附上dts配置&#xff0c;也可自行查看先关文档RKDocs\common\display\Rockchip_RK3588_User_Guide_eDP_CN.pdf 解决方案&#xff1a; // EDP屏参数panel-edp {compatible "simple-panel";// 屏en脚 自行根据原理图配置enable-gpios <&gpioX R…

【扫雷game】

编写一个扫雷游戏程序需要考虑几个关键部分&#xff1a;游戏逻辑、用户界面和交互。这里我将提供一个基本的扫雷游戏逻辑的伪代码和概念&#xff0c;你可以使用Python等编程语言来实现它。 游戏逻辑 初始化游戏板 创建一个二维数组来表示游戏板&#xff0c;每个单元格可能包含…

解读vue3源码-1

提示&#xff1a;看到我 请让滚去学习 vue3渲染流程 文章目录 vue3渲染流程vue3的3个核心&#xff1a;1.响应式模块(Reactivity Module)--创建响应式数据2.编译模块(Compiler Module)--模版编译器将html转换为一个渲染函数3.渲染模块(Renderer Module) 渲染流程&#xff1a;1.首…

python办公自动化——(二)替换PPT文档中图形数据-柱图

效果: 数据替换前 &#xff1a; 替换数据后&#xff1a; 实现代码 import collections.abc from pptx import Presentation from pptx.util import Cm,Pt import pyodbc import pandas as pd from pptx.chart.data impo…

Python项目开发实战:酒店管理系统(案例教程)

一、引言 在当今信息化社会,酒店管理系统作为酒店运营的重要组成部分,其重要性不言而喻。一个高效、稳定的酒店管理系统不仅能提升酒店的运营效率,还能为顾客提供更为便捷、舒适的服务体验。本文将详细介绍如何使用Python语言开发一个基本的酒店管理系统,并从需求分析、系统…

【量算分析工具-贴地距离】GeoServer改造Springboot番外系列九

【量算分析工具-概述】GeoServer改造Springboot番外系列三-CSDN博客 【量算分析工具-水平距离】GeoServer改造Springboot番外系列四-CSDN博客 【量算分析工具-水平面积】GeoServer改造Springboot番外系列五-CSDN博客 【量算分析工具-方位角】GeoServer改造Springboot番外系列…

postman都有哪些功能?

接口测试 可以方便地发送 HTTP 请求&#xff0c;包括各种方法&#xff08;GET、POST、PUT、DELETE 等&#xff09;&#xff0c;并查看响应结果。 参数设置 能够灵活设置请求的参数&#xff0c;如查询参数、请求头、请求体等。 环境管理 支持创建不同的环境&#xff0c;方便…

Web前端三大主流框架技术分享

在当今快速发展的互联网时代&#xff0c;Web前端技术作为连接用户与服务的桥梁&#xff0c;其重要性不言而喻。随着技术的不断进步&#xff0c;为了提升开发效率、优化用户体验&#xff0c;一系列强大的前端框架应运而生。其中&#xff0c;Angular、React和Vue.js作为当前最为主…

广东海上丝绸之路文化促进会正式批复荐世界酒中国菜的指导单位

广东海上丝绸之路文化促进会正式批复成为“世界酒中国菜”系列活动指导单位 近日&#xff0c;广东海上丝绸之路文化促进会近日正式批复荐酒师国际认证&#xff08;广州&#xff09;有限公司&#xff0c;成为备受瞩目的“世界酒中国菜”系列活动的指导单位。此举旨在通过双方的…

IDEA中各种Maven相关问题(文件飘红、下载依赖和启动报错)

错误情况 包名、类名显示红色、红色波浪线&#xff0c;大量依赖提示不存在&#xff08;程序包xxx不存在&#xff09; 工程无法启动 一、前提条件 1、使用英文原版IDEA 汉化版的可能有各种奇怪的问题。建议用IDEA英文版&#xff0c;卸载重装。 2、下载maven&#xff0c;配置环…

2024HW|常见红队使用工具

目录 什么是HW&#xff1f; 什么是网络安全红蓝对抗&#xff1f; 红队 常见工具 信息收集工具 Nmap 简介 漏洞扫描工具 Nessus简介 AWVS 简介 抓包工具 Wireshark简介 TangGo 简介 web 应用安全工具 Burpsuite 简介 SQLMap webshell 管理工具 蚁剑 冰蝎 后…

uniapp input点击旁边按钮,如何不失去焦点

有遇到在评论的时候&#xff0c;唤起键盘。旁边的其他按钮&#xff08;匿名、发送等&#xff09;&#xff0c;input会失去焦点。软键盘会隐藏 处理方法: 1、重新获取键盘焦点 &#xff08;通过重置focus状态来处理&#xff09; #页面 用focus变量来动态设置 <input v-mod…

《PNAS》和《Nature Communications》仿章鱼和蜗牛的粘液真空吸附,赋予了机器人吸盘新的“超能力”

想象一下&#xff0c;如果机器人能够像章鱼一样牢牢吸附在粗糙崎岖的岩石上&#xff0c;或者像蜗牛那样在墙面上悠然负重爬行&#xff0c;那会是多么神奇的一幕&#xff01;近日&#xff0c;布里斯托大学机器人实验室的Jonathan Rossiter教授课题组就为我们带来了这样的“超能力…

嵌入式功耗

adb ADB&#xff08;Android Debug Bridge&#xff0c;安卓调试桥&#xff09;是一个多功能的命令行工具&#xff0c;允许用户与运行 Android 的设备进行通信。它是 Android SDK 的一部分&#xff0c;广泛用于开发和调试 Android 应用程序。以下是 ADB 的一些主要功能和使用场景…