数据赋能(102)——概念:数据分析、数据挖掘、数据洞察

此文为本人学习与提高能力的笔记。

数据分析、数据挖掘与数据洞察这三个术语,为了确保这些术语使用的精准度和专业性,我们必须对它们有更为深入的认知。这三个概念虽在某种程度上相互关联,但在实际应用中各自承载着不同的侧重点和用途,因此,我们需要精准理解它们,以便在适当的场合下准确运用。

在探讨“数据分析”、“数据挖掘”、“数据洞察”术语时,我们将从定义的角度进行逐点对比,并重点关注它们描述、关键词和侧重点等方面的差异。这些差异将揭示它们在内涵、外延以及应用场景上的不同体现。

数据分析的定义:
  1. 描述:数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总、理解并消化,以最大化地开发数据的功能,发挥数据的作用。这是一个为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
  2. 关键词:
    1. 统计:统计是数据分析的基础,它涉及对数据的收集、整理、分析和解释。
    2. 挖掘:挖掘则是从大量数据中寻找和发现有用信息的过程,它有助于我们深入理解数据的内在规律和模式。
    3. 可视化:可视化则是将数据分析结果以图形、图表等形式展现出来,使得结果更易于理解和接受。
  3. 侧重点:
    1. 强调对数据的深入理解和洞察,通过统计分析等方法揭示数据背后的规律和趋势;
    2. 数据分析注重提取有价值的信息,为决策提供科学依据;
    3. 数据分析还关注数据的可视化呈现,以便更好地传达分析结果。
数据挖掘的定义:
  1. 描述:数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。这一过程通常与计算机科学紧密相关,并通过多种方法来实现,如统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等。数据挖掘是一个交叉学科,涉及数据库技术、人工智能、机器学习、模式识别、高性能计算、知识工程、神经网络、信息检索、信息的可视化等众多领域。
  2. 关键词:
    1. 数据:这是数据挖掘的基础,涉及大量的、多种类型的信息集合。
    2. 挖掘:这个词意味着深入搜索、探寻或发现,它强调从数据中找出隐藏或不易察觉的信息。
    3. 算法:数据挖掘过程通常依赖特定的算法和统计技术,用于识别数据中的模式、关联或趋势。
    4. 信息/知识:数据挖掘旨在从数据中提取有价值的信息或知识,这些信息或知识可能对于决策制定、问题解决或业务增长具有重要意义。
    5. 模式/关联:数据挖掘通常关注数据中的模式和关联,这些可能是隐藏的、不易被直接观察到的,但能提供关于数据本质的深入理解。
    6. 过程:数据挖掘是一个系统性的过程,涉及数据预处理、模型选择、算法应用、结果评估等多个步骤。
  3. 侧重点:
    1. 强调使用算法和计算机技术对大数据进行深度处理和分析;
    2. 数据挖掘注重从数据中提取有价值的、非显而易见的信息或知识;
    3. 数据挖掘还关注对提取出的信息或模式进行解释和应用,以便为决策提供支持或推动业务创新。
数据洞察的定义:
  1. 描述:数据洞察是一个深入探索数据的过程,旨在通过高级的数据挖掘和分析技术,揭示隐藏于海量数据背后的规律、趋势和关联。它结合了多种统计分析方法,对收集的大量数据进行精细化研究、信息提取和结论形成,从而为决策提供数据支持和洞察。数据洞察不仅关注数据的初步处理、整理和探索,更注重对数据的深入挖掘和理解,以发现数据背后的隐藏规律和潜在价值。
  2. 关键词:
    1. 数据挖掘:这是数据洞察的核心技术之一,通过运用特定的算法和工具,从海量数据中提取有价值的信息和模式。
    2. 分析技术:数据洞察依赖于各种分析技术,包括统计分析、机器学习、模式识别等,以揭示数据中的深层次规律和关联。
    3. 隐藏规律:数据洞察旨在发现数据中不易察觉的隐藏规律,这些规律对于理解数据本质和预测未来趋势具有重要意义。
    4. 趋势和关联:通过数据洞察,可以识别出数据中的趋势和关联,为企业的战略规划和业务决策提供重要参考。
    5. 决策支持:数据洞察的最终目标是提供有针对性的见解和建议,为企业决策提供数据支持和依据,帮助企业做出更明智、更科学的决策。
  3. 侧重点:
    1. 深度分析与挖掘:数据洞察侧重于通过复杂的数据挖掘和分析技术,深入探索数据中的深层次信息和模式。
    2. 揭示隐藏价值:与简单的数据分析不同,数据洞察更注重揭示数据背后的隐藏规律和潜在价值,这些往往对于业务决策和增长至关重要。
    3. 决策支持:数据洞察的最终目标是为组织或个人提供有针对性的见解,从而支持更明智、基于证据的决策。
内涵差异:
  1. 数据分析:其主要目的是通过观察数据来提取有价值的信息。它主要侧重于现状分析和原因分析,通过对比分析、分组分析、交叉分析、回归分析等方法来验证假设并得出相应结论。数据分析主要依赖业务知识,其结果更多是通过指标统计量进行呈现,需要结合业务知识进行解读。
  2. 数据挖掘:是指从大量数据中通过统计学、人工智能、机器学习等方法挖掘出未知的、有价值的信息和知识的过程。它侧重于发现数据中的“知识规则”(KDD),其结论是通过机器学习从学习集中自动发现的,可以直接用于预测。数据挖掘对技术的要求更高,需要编程能力、数学能力和机器学习能力的支持。
  3. 数据洞察:是一个综合性的过程,利用先进的数据挖掘和分析技术深入探索和解读数据,揭示隐藏规律、趋势和关联,为企业提供有价值的见解以支持决策制定和业务优化。它强调对数据的深度理解和应用,以实现数据驱动的决策和增长。
外延差异:

数据分析的外延涵盖了从收集原始数据到形成最终结论的全过程。它涉及数据的清洗、转换、建模、可视化以及解释等多个环节,旨在揭示数据的基本特征和趋势。数据分析的应用领域非常广泛,几乎涵盖了所有需要利用数据进行决策和优化的场景。例如,市场营销人员可以通过分析消费者购买数据来优化产品推广策略;企业决策者可以利用财务数据分析来评估公司运营状况并制定发展策略。

数据挖掘的外延重点在于从大规模、复杂、不完全的数据集中发现有用的模式、关联和规律。它依赖于特定的算法和工具,通过自动或半自动的方式提取隐藏在数据中的知识和信息。数据挖掘在多个领域都有广泛应用,特别是在金融、医疗、电商等行业。例如,金融机构可以利用数据挖掘技术识别欺诈行为和信用风险;医疗机构可以通过挖掘患者数据来改进治疗方案和提高治疗效果。

数据洞察的外延强调对数据的深度理解和价值挖掘。它不仅关注数据的描述和解释,更侧重于发现数据背后的隐藏规律和潜在价值,为决策提供有力的支持。数据洞察的应用更多集中在高级决策和战略规划层面。企业高层管理者可以利用数据洞察来识别市场趋势、评估竞争对手、制定长期发展战略等。

这三者在外延上的差异主要体现在它们所处理的数据量、所需的技术能力以及所得结论的用途上。一般来说,数据挖掘和数据洞察往往需要处理更大的数据量,对技术的要求也更高。同时,数据挖掘所得出的结论更多用于预测,而数据洞察则更侧重于为决策提供支持。

数据分析、数据挖掘和数据洞察各有侧重。数据分析注重数据的初步处理和解释;数据挖掘强调从复杂数据集中发现有用信息和模式;而数据洞察则更关注对数据的深度理解和价值挖掘。三者在实际应用中相互补充,共同构成了数据处理和分析的完整链条。

应用场景:
  1. 数据分析:广泛应用于各种业务场景,如销售数据分析、用户行为分析等,主要用于现状描述和问题诊断。
  2. 数据挖掘:在金融、零售、医疗保健和市场营销等领域有广泛应用。例如,金融机构可以利用数据挖掘识别潜在的信用风险和欺诈行为;零售商则可以通过数据挖掘调整产品定价和推广策略。
  3. 数据洞察:更侧重于为高层决策提供支持,帮助企业识别市场趋势、优化战略规划等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/18342.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

内网安全--隧道技术-MSF上线本地

免责声明:本文仅做技术交流与学习... 不得不说,小白最近也是用上了viper,这里要特别感谢一下my bro 北岭敲键盘的荒漠猫 MSF--viper: --生成马子-->上线 --进入meterpreter. 1-查看路由,添加路由. 查看路由信息 : run autoroute -p run post/multi/manage/autoroute 添加…

『香橙派』基于Orange Pi AIpro打造高效个人云存储解决方案

📣读完这篇文章里你能收获到 了解Orange Pi AIpro硬件优势,为构建高效云存储基础设施的理想平台。学会使用Orange Pi AIpro硬件平台,搭载Ubuntu Server系统,打造云存储环境。掌握利用Kodbox软件,享受文件管理、多格式…

微软MSBuild大会发布Copilot+PC:技术革新还是隐私噩梦?

微软在最近的MSBuild 2024大会上发布了全新的CopilotPC概念,这一技术结合了高通骁龙X Elite芯片,将人工智能与PC紧密结合。此次发布引起了广泛关注,不仅是因为其技术创新,还因为潜在的隐私问题。甚至连Elon Musk也对此表示担忧&am…

CGAL 网格布尔操作(带属性)

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 CGAL在进行布尔操作时可以为我们提供了Mesh的相关信息,比如并集部分是由原Mesh数据的那些面片组成,虽然现阶段还不了解这有什么用。 二、实现代码 #include <iostream> #include <iterator> #includ…

小熊家务帮day5 客户管理模块1 (小程序认证,手机验证码认证等)

客户管理模块 1.认证模块1.1 认证方式介绍1.1.1 小程序认证1.1.2 手机验证码登录1.1.3 账号密码认证 1.2 小程序认证1.2.1 小程序申请1.2.2 创建客户后端工程jzo2o-customer1.2.3 开发部署前端1.2.4 小程序认证流程1.2.4.1 customer小程序认证接口设计Controller层Service层调用…

C++ | Leetcode C++题解之第118题杨辉三角

题目&#xff1a; 题解&#xff1a; class Solution { public:vector<vector<int>> generate(int numRows) {vector<vector<int>> ret(numRows);for (int i 0; i < numRows; i) {ret[i].resize(i 1);ret[i][0] ret[i][i] 1;for (int j 1; j &…

Python | Leetcode Python题解之第117题填充每个节点的下一个右侧节点指针II

题目&#xff1a; 题解&#xff1a; class Solution:def connect(self, root: Node) -> Node:if not root:return Nonestart rootwhile start:self.last Noneself.nextStart Nonep startwhile p:if p.left:self.handle(p.left)if p.right:self.handle(p.right)p p.nex…

基于眼底增强的疾病感知蒸馏模型用于OCT图像的视网膜疾病分类

文章目录 Fundus-Enhanced Disease-Aware Distillation Model for Retinal Disease Classification from OCT Images摘要方法实验结果 Fundus-Enhanced Disease-Aware Distillation Model for Retinal Disease Classification from OCT Images 摘要 光学相干断层扫描&#xf…

【MySQL】SQL 基础

文章目录 【 1. SQL 的书写规则 】1.1 大小写规则1.2 常量的表示1.3 注释1.4 HELP 系统帮助 【 2. 常用数据库函数 】2.1 SHOW DATABASES 显示数据库2.2 CREATE DATABASE 创建数据库2.3 ALTER DATABASE 修改数据库2.4 DROP DATABASE 删除数据库2.5 USE 选择数据库 【 3. RDBMS …

TypeScript系列之-- 数组和元组类型

数组的定义&#xff1a; 第一种&#xff0c;可以在元素类型后面接上[] let list: number[] [1, 2, 3]; 第二种方式是使用数组泛型&#xff0c;Array<元素类型> let list: Array<number> [1, 2, 3]; 如果数组想每一项放入不同数据怎么办&#xff1f;用元组类型…

软件工程作业8

说说你使用过的编程语言&#xff0c;比较它们的优势。 我使用过C语言、Java。 C语言的优势&#xff1a; 性能高效&#xff1a;C语言是编译型语言&#xff0c;接近底层&#xff0c;执行效率高&#xff0c;特别适合对性能有严格要求的应用&#xff0c;如操作系统、嵌入式系统、…

antd学习笔记

antd组件库为Web应用提供了丰富的基础UI组件&#xff0c;antd全称为&#xff1a;ant-design。 antd官网&#xff1a;Ant Design - 一套企业级 UI 设计语言和 React 组件库 一、安装 npm install antd 或 yarn add antd

C#判断MySQL数据库中是否存在某个数据库或数据表

涉及到的SQL语句如下&#xff1a; 判断表是否存在&#xff1a; select count(*) as A from information_schema.tables where table_name test and table_schema test1 删除数据库表 "DROP TABLE IF EXISTS test"

【CSharp】ushort* 类型的指针操作ushort变量以及数组

【CSharp】ushort* 类型的指针操作ushort变量以及数组 1.背景2.代码1.背景 在 C# 中,IntPtr 是一个平台特定的指针或句柄类型,可以用来存储指针或句柄。 在一些需要与非托管代码交互或处理底层内存操作的场景下,IntPtr 常被用来处理指针。 虽然 IntPtr 可以存储任何类型的指…

建立SFTP服务器

文章目录 建立SFTP服务器1. 使用VMware安装CentOS 7虚拟机。2. 安装完虚拟机后&#xff0c;进入虚拟机&#xff0c;修改网络配置&#xff08;onboot改为yes&#xff09;并重启网络服务&#xff0c;查看相应IP地址&#xff0c;并使用远程连接软件进行连接。3. 配置yum源&#xf…

《NoSQL数据库技术与应用》 文档存储数据库MongoDB

搜索 《NoSQL数据库技术与应用》 教学设计 课程名称&#xff1a;NoSQL数据库技术与应用 授课年级&#xff1a; 20xx年级 授课学期&#xff1a; 20xx学年第一学期 教师姓名&#xff1a; 某某老师 2020年5月6日 课题 名称 第2章 文档存储数据库MongoDB 计划学时 4 课时 内容 分…

vscode常用操作

1 vscode跳转node_modules下文件&#xff0c;没有切换定位到左侧菜单目录的问题 2&#xff0c;搜索node-modules 3&#xff0c;设置选中字体颜色 {"workbench.colorTheme": "Default Light Modern","editor.mouseWheelZoom": true,"termin…

opencascade 快速显示AIS_ConnectedInteractive源码学习

AIS_ConcentricRelation typedef PrsDim_ConcentricRelation AIS_ConcentricRelation AIS_ConnectedInteractive 简介 创建一个任意位置的另一个交互对象实例作为参考。这允许您使用连接的交互对象&#xff0c;而无需重新计算其表示、选择或图形结构。这些属性是从您的参考对…

Matplotlib绘图指南:从基础绘图到多子图展示

目录 前言 导入模块 第一点&#xff1a;绘制图像 第二点&#xff1a;保存图像 第三点&#xff1a;多图形的绘制 第四点&#xff1a;绘制多子图 总结 前言 在数据可视化中&#xff0c;Matplotlib是一款强大的Python库&#xff0c;提供了丰富的功能来绘制各种类型的图表。…

Clickhouse 窗口函数总结——Clickhouse 基础篇(九)

文章目录 自增行号函数跳跃排名函数连续排名函数窗口计数函数窗口最大值函数窗口最小值函数窗口平均值函数 自增行号函数 按照值排序时产生一个自增行号&#xff0c;不会重复。针对相同数据&#xff0c;先查出的排名在前&#xff0c;没有重复值 SELECT row_number() OVER (PA…