2024 年“泰迪杯”A 题:生产线的故障自动识别与人员配置--第四题(用遗传算法解决生产线排班问题--matlab代码)

问题背景:

        问题四:根据实际情况,现需要扩大生产规模,将生产线每天的运行时间从 8 小时增加 到 24 小时不间断生产,考虑生产线与操作人员的搭配,制定最佳的操作人员排班方案,要求满足以下条件:(1) 各操作人员做五休二,尽量连休 2 天; (2) 各操作人员每班连续工作 8 小时; (3) 班次时间:早班(8:00-16:00)、中班(16:00-24:00)、晚班(0:00-8:00); (4) 各工龄操作人员的人数比例与问题 3 中的比例相同; (5) 各操作人员的班次安排尽量均衡。

        已知问题三中原本每条生产线与相应操作人员对应如下:

1d2de51f364848f0a14ab40fd8795b69.png

问题分析:

        问题四为优化问题,考虑使用遗传算法,根据附件三给出的生产线与操作人员信息,无法将生产线与操作人员剥离开而单独讨论某条生产线或者某位操作人员的工作能力指标。因此,在本题中,固定生产线与相应工龄操作人员的搭配,即从理论上固定生产效率。那么,本题仅为优化问题中的排班问题,考虑如下约束条件:

1.每天10条线24小时工作;

2.一位操作人员每天工作8小时;

3.夜班之后必须至少休一天(考虑现实情况添加);

4.各操作人员上五休二,尽量连休;

5.各操作人员班次尽量均匀。

        其中,为了生产线的正常运行与操作人员身体健康,1-3为硬性约束,4-5为软约束,以此建立遗传算法优化模型,希望得到合理的排班表。考虑到24小时生产线不间断运营,并且要保证操作人员工龄比例与附件三相同,至少需要5组生产线操作人员,即50人,约定员工与产线有如下对应关系:

ff12e2b56570454893d849bb71cb0787.png

遗传算法排班:

        使用遗传算法进行排班,首先,需要确定染色体的编码,这里,每条染色体代表一个排班表,染色体中每两位二进制编码表示一种班型,对于一周7天,每天有操作人员50人,一条染色体由7×50条操作人员基因组成,每一个操作人员基因又由2位的班型基因(二进制编码)构成,因此,一条染色体由7×50×2位编码的基因组成。

pop = 50; %设定初始种群数量
length = 700; %种群基因编码长度,一周七天,每天50个排班人员,总共3种班型(用2位二进制编码表示)
gen = 500; %迭代次数
crossover_probablity = 0.9; %交叉概率     %交叉概率一般在0.6~0.9之间
variation_probablity = 0.1; %变异概率     %
initial_pop = round(rand(pop,length)); %生成初始种群%算法迭代m次
for m=1:gen%将每一代 染色体长度为700位的二进制种群 转化为50*7的矩阵(50人,一周7天)x = zeros(50,7,pop);for i = 1:size(initial_pop,1) %分别遍历排班表for j = 1:7  %遍历一周七天for k = 1:50 %遍历50个排班人员for l = 1:2 %二进制班型转换为十进制x(k,j,i) = initial_pop ( i,100*(j-1)+2*(k-1)+l ) * 2^(2-l) + x(k,j,i);   % 100是人数50×排班编码数2endend      end%%%%%确定每天每个班次不超过十人上班,若超过10人,按工龄比例随机保留10名员%%%%%工上班,其他人放假,且各工龄比例如题三for j=1:7for f = 0:2if sum(x(1:10,j,i)==f)>2     % 工龄1人数大于2w = find(x(1:10,j,i)==f);   % 获取上班的人索引n_geshu = size(w,1);ran_index = randperm(n_geshu);   % 生成随机索引 n_de = n_geshu - 2;  % 要改为休假的员工人数de_index = ran_index(1:n_de);  dey_index = w(de_index,:);  % 随机抽取放假人员索引x(dey_index,j,i) = 3; endif sum(x(11:20,j,i)==f)>2     % 工龄2人数大于2w = find(x(11:20,j,i)==f);  n_geshu = size(w,1);ran_index = randperm(n_geshu);   % 随机索引 n_de = n_geshu - 2; de_index = ran_index(1:n_de);dey_index = w(de_index,:);x(dey_index+10,j,i) = 3; endif sum(x(21:25,j,i)==f)>1     % 工龄3人数大于2w = find(x(21:25,j,i)==f);  n_geshu = size(w,1);ran_index = randperm(n_geshu);   % 随机索引 n_de = n_geshu - 1; de_index = ran_index(1:n_de);dey_index = w(de_index,:);x(dey_index+20,j,i) = 3; endif sum(x(26:35,j,i)==f)>2     % 工龄4人数大于2w = find(x(26:35,j,i)==f);   % 人索引n_geshu = size(w,1);ran_index = randperm(n_geshu);   % 随机索引 n_de = n_geshu - 2;  % 要取消的工作人数de_index = ran_index(1:n_de);dey_index = w(de_index,:);x(dey_index+25,j,i) = 3; endif sum(x(36:45,j,i)==f)>2     % 工龄5人数大于2w = find(x(36:45,j,i)==f);  n_geshu = size(w,1);ran_index = randperm(n_geshu);   % 随机索引 n_de = n_geshu - 2;  de_index = ran_index(1:n_de);dey_index = w(de_index,:);x(dey_index+35,j,i) = 3; endif sum(x(46:50,j,i)==f)>1     % 工龄6人数大于2w = find(x(46:50,j,i)==f);  n_geshu = size(w,1);ran_index = randperm(n_geshu);   % 随机索引 n_de = n_geshu - 1;  de_index = ran_index(1:n_de);dey_index = w(de_index,:);x(dey_index+45,j,i) = 3; endendend%%%!规定夜班后必是休息!for j = 1:6  %遍历一周前6天for k = 1:50 %遍历50个排班人员if x(k,j,i)==2x(k,j+1,i)=3;endendend%%%%%确定每天每个班次不低于十人上班,若低于,随机选取改工龄内休假的人排班for j=1:7for f = 0:2if sum(x(1:10,j,i)==f)<2     w = find(x(1:10,j,i)==f);   % 已经排班的人索引n_geshu = size(w,1);ww = find(x(1:10,j,i)==3);   % 休假人索引nj_geshu = size(ww,1);ran_index = randperm(nj_geshu);   % 随机索引 n_cre = 2 - n_geshu;  % 要由休假变上班的人数de_index = ran_index(1:n_cre);dey_index = ww(de_index,:);x(dey_index,j,i) = f; endif sum(x(11:20,j,i)==f)<2     % 工龄2w = find(x(11:20,j,i)==f);   n_geshu = size(w,1);ww = find(x(11:20,j,i)==3);   nj_geshu = size(ww,1);ran_index = randperm(nj_geshu);   % 随机索引 n_cre = 2 - n_geshu;  de_index = ran_index(1:n_cre);dey_index = ww(de_index,:);x(dey_index+10,j,i) = f; endif sum(x(21:25,j,i)==f)==0     % 工龄3一班次只需一人,所以如果无人上班,添加一人ww = find(x(21:25,j,i)==3);  n_geshu = size(ww,1);ran_index = randperm(n_geshu);   % 随机索引 n_de = 1;  de_index = ran_index(1);dey_index = ww(de_index,:);x(dey_index+20,j,i) = f; endif sum(x(26:35,j,i)==f)<2     % 工龄4w = find(x(26:35,j,i)==f);  n_geshu = size(w,1);ww = find(x(26:35,j,i)==3);  n_geshu = size(ww,1);ran_index = randperm(n_geshu);   % 随机索引 n_cre = 2 - n_geshu;  de_index = ran_index(1:n_cre);dey_index = ww(de_index,:);x(dey_index+25,j,i) = f; endif sum(x(36:45,j,i)==f)<2     % 工龄5w = find(x(36:45,j,i)==f);  n_geshu = size(w,1);ww = find(x(36:45,j,i)==3);  n_geshu = size(ww,1);ran_index = randperm(n_geshu);   % 随机索引 n_cre = 2 - n_geshu;  de_index = ran_index(1:n_cre);dey_index = ww(de_index,:);x(dey_index+35,j,i) = f; endif sum(x(46:50,j,i)==f)==0     % 工龄6ww = find(x(46:50,j,i)==3);  n_geshu = size(ww,1);ran_index = randperm(n_geshu);   % 随机索引 n_de = 1;  de_index = ran_index(1);dey_index = ww(de_index,:);x(dey_index+45,j,i) = f; endendendend%%%%%% 约束条件 %%%%%%约束1---  每天每班次上班十人,且工龄如题三比例  -------硬约束 --y1 = zeros(pop,7);%每天的适应值yy1 = zeros(pop,7);   % yy1,2,3表示早中晚班人员配置适应值yy2 = zeros(pop,7);yy3 = zeros(pop,7);yy4 = zeros(pop,7);   % yy4表示每天20人休息适应值--硬for i=1:size(initial_pop,1)for j=1:7yy1(i,j) = 1/((sum(x(1:10,j,i)==0)-2)^2 + (sum(x(11:20,j,i)==0)-2)^2 + (sum(x(21:25,j,i)==0)-1)^2 + (sum(x(26:35,j,i)==0)-2)^2 + (sum(x(36:45,j,i)==0)-2)^2 + (sum(x(46:50,j,i)==0)-1)^2 + 1);% 每个时间段的各年龄工人刚好和生产线匹配----早班,午班晚班类似yy2(i,j) = 1/((sum(x(1:10,j,i)==1)-2)^2 + (sum(x(11:20,j,i)==1)-2)^2 + (sum(x(21:25,j,i)==1)-1)^2 + (sum(x(26:35,j,i)==1)-2)^2 + (sum(x(36:45,j,i)==1)-2)^2 + (sum(x(46:50,j,i)==1)-1)^2 + 1);yy3(i,j) = 1/((sum(x(1:10,j,i)==2)-2)^2 + (sum(x(11:20,j,i)==2)-2)^2 + (sum(x(21:25,j,i)==2)-1)^2 + (sum(x(26:35,j,i)==2)-2)^2 + (sum(x(36:45,j,i)==2)-2)^2 + (sum(x(46:50,j,i)==2)-1)^2 + 1);yy4(i,j) = 1/((sum(x(1:10,j,i)==3)-4)^2 + (sum(x(11:20,j,i)==3)-4)^2 + (sum(x(21:25,j,i)==3)-2)^2 + (sum(x(26:35,j,i)==3)-4)^2 + (sum(x(36:45,j,i)==3)-4)^2 + (sum(x(46:50,j,i)==3)-2)^2 + 1);y1(i,j) = yy1(i,j) + yy2(i,j) + yy3(i,j) + yy4(i,j);endend%y1为每天的适应值(最大值为1),yw1为每周的适应值(理论最大值为7x4),此处为1for i=1:size(initial_pop,1)yw1(i,1) = sum(y1(i,:))/28;end%约束2-----   每人一周内上5休2  y2 = zeros(pop,7); %每人的适应值-硬 - 五休二y3 = ones(pop,k); %每人的适应值-软for i = 1:size(initial_pop,1) for k = 1:49y2(i,k) = 1/((sum(x(k,1:7,i)==3) - 2)^2 + 1);   %最大 1  %上五休二 y4(i,k) = 1/((sum(x(k,1:7,i)==3)-sum(x(k+1,1:7,i)==3))^2 +1); for j = 1:5  %遍历周一至周六if x(k,j,i) == 2    % 如果是放假--夜班后 % 若放一天就继续工作的惩罚函数y3(i,k) = y3(i,k) - 1/5 *( x(k,j+2,i)~=3 );   % 最大 1  尽量连休endendendend%y2,y3为每人的适应值(最大值为1),yr1,yr2为整个排班表的适应值(理论最大值为50),此处1for i=1:size(initial_pop,1)yr1(i,1) = sum( y2(pop,:) )/50;yr2(i,1) = sum( y3(pop,:) )/50;yr3(i,1) = sum( y4(pop,:) )/50;end% 权重凭感觉给的,实际应该考虑约束条件的重要性及达到约束的难易程度y = 0.8*yw1 +0.05*yr1 + 0.1*yr2 + 0.15*yr3;   %找到种群中的最优基因  [a,b] = max(y);  % a-单次迭代中最大y值; b-最大y的索引位置fit1=y/sum(y); %计算每个种群的适应度在总适应度里所占的比例fit2=cumsum(fit1); %累加%基因选择choose=sort(rand(pop,1)); %有序随机数序列k=1;i=1;while k<=popif choose(k)<fit2(i)  % 此处使用的是--轮盘赌选择法choosen_population(k,:)=initial_pop(i,:);k=k+1;elsei=i+1;endend%基因交叉--for i=1:2:pop-1if rand<crossover_probablitycrossover_length=round(rand*(length-1))+1; %基因交叉长度crossover_population(i,:)=[choosen_population(i,1:crossover_length),choosen_population(i+1,crossover_length+1:end)];crossover_population(i+1,:)=[choosen_population(i+1,1:crossover_length),choosen_population(i,crossover_length+1:end)];elsecrossover_population(i:i+1,:) = choosen_population(i:i+1,:);endend%基因变异variation_population=crossover_population; for i=1:popif rand<variation_probablityvariation_location=round(rand*(length-1))+1;variation_population(i,variation_location)=1-variation_population(i,variation_location);endendvariation_population(end,:)=initial_pop(b,:); %保留该次迭代中的最优种群initial_pop=variation_population; %经选择、交叉、变异后的种群作为下一代的初始种群,从而完成迭代best(m,1)=y(b); % 记录下第m代的最优函数值best(m,2) = yw1(b);  %记录第m代的最优适应值们best(m,3) = yr1(b);best(m,4) = yr2(b);best(m,5) = yr3(b);best_pop(:,:,m) = x(:,:,b);  % 记录下第m代的最优排班表
end%画图
y_smoothed = smooth(1:size(best,1),best(:,1), 0.5, 'loess');  %添加平滑曲线
figure;
plot(1:size(best,1),best(:,1),'-', 'LineWidth',1.2);hold on;
plot(1:size(best,1),y_smoothed,'-','color','red', 'LineWidth',1.2);hold on;
xlabel('迭代次数');
ylabel('适应值');
title('适应值变化曲线(排班一周)');

197f83306aef497882c99907b72d5c5c.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/17465.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RedHat9网络配置设计

目录 一、实验目的 二、实验过程 1、配置新网络接口 2、多网卡配置网络 3、网络接口的绑定&#xff0c;进行远程访问 4、配置网络接口的组合 一、实验目的 本次实验的目的是使用nmcli命令工具配置网络&#xff0c;ens160配置多个网卡&#xff0c;进行网络接口的绑定与组合…

使用“tcpdump”查看原始数据包

使用“tcpdump”查看原始数据包 尽管像 Snort 这样的工具可以出色地筛选通过我们网络的所有内容&#xff0c;但有时需要查看原始数据。为此&#xff0c;我们最好的工具是“tcpdump”。 使用 tcpdump 的最基本方法是简单地发出以下命令&#xff1a; tcpdump 使用 -v 选项可以…

Redis 主从搭建简单教程

安装单机 首先拿到安装包 wget https://download.redis.io/releases/redis-7.0.15.tar.gz然后进行解压 tar -zxvf redis-7.0.15.tar.gz 然后创建一个文件夹myredis将原始配置文件进行备份 mkdir /myrediscp redis.conf /myredis/redis7.conf 将配置文件复制进去 最后使用vim编…

mysql的MyISAM存储引擎

MyISAM是MySQL的一种非事务性存储引擎,曾经是MySQL的默认存储引擎。虽然现在InnoDB成为了默认存储引擎,但MyISAM仍然有其独特的优势和适用场景。以下是对MyISAM存储引擎的详细介绍: 特性 表级锁定: MyISAM使用表级锁定,这意味着在对表进行读写操作时,会锁定整个表。读写…

室内也可以用北斗定位?还能用RTK?

室内卫星顾名思义&#xff0c;就是在室内有遮挡环境中的卫星定位技术&#xff0c;众所周知&#xff0c;目前全球几大GNSS定位系统已经很完善&#xff0c;但是GNSS有个致命的弱点&#xff0c;就是地面如果有遮挡就没有信号&#xff0c;在这样的条件下&#xff0c;在室内定位场景…

#微信#经验分享

七燕论文是一款非常好用的论文写作工具&#xff0c;不仅在查重降重方面表现出色&#xff0c;而且还具有方便、快捷的特点&#xff0c;是广大学生和研究人员的理想选择。 首先&#xff0c;七燕论文在查重降重方面非常靠谱。它能够帮助用户快速检测论文的原创度&#xff0c;提供…

使用selenium打开浏览器之后,有浏览器内部的提示设置默认浏览器等,怎么屏蔽或关闭这些提示

当使用Selenium打开浏览器时&#xff0c;可能会遇到浏览器内部的一些提示或弹窗&#xff0c;例如设置默认浏览器的提示。你可以通过配置选项或设置浏览器参数来屏蔽或关闭这些提示。 以下是针对不同浏览器的一些方法&#xff1a; 对于Chrome浏览器&#xff1a; 在创建Chrome…

RT_Thread内核源码分析(一)——CM3内核和上下文切换

目录 一、程序存储分析 1.1 CM3内核寻址空间映射 1.2 程序静态存储和动态执行 二、CM3内核相关知识 2.1 操作模式和特权极别 2.2 环境相关寄存器 2.2.1 通用寄存器组&#xff0c; 2.2.2 状态寄存器组 2.2.3 模式切换环境自动保存 2.2.4 函数调用形参位置 2.3 …

mysql INSERT INTO时的锁

mysql INSERT INTO时的默认锁 MySQL中的INSERT INTO语句默认使用的是表锁,而不是行锁。表锁是在执行INSERT INTO操作时直接锁定整个表,确保在同一时间只有一个线程可以对表进行写操作。 使用行锁来处理INSERT INTO操作 方式一 使用事务(BEGIN开启事务,COMMIT提交事务)…

SQL数据库创建用户及赋予权限

1.理论 创建登录名 CREATE LOGIN [登入名LoginName] WITH PASSWORD ‘YourPassword’; – 创建用户 CREATE USER [UserName] FOR LOGIN [登入名LoginName]; – 授予权限 GRANT EXECUTE ON [YourStoredProcedure] TO [YourUserName]; – 允许执行指定的存储过程 GRANT SELEC…

Petalinux 基础操作流程总结

Petalinux 工作环境&#xff1a; ● Petalinux 软件安装 ● “/bin/sh” 需要是 bash&#xff0c;系统默认可能是 dash&#xff0c;需要修改 ● 不能在共享文件夹创建 petalinux 工程 ● 使用 petalinux 命令前需要设置 petalinux 环境变量&#xff1a;source /settings.sh创建…

信息安全基础(补充)

&#xff09;的内容主要有数据备份、数据修复、系统恢复等。响应&#xff08;Respons&#xff09;的内容主要有应急策略、应急机制、应急手段、入侵过程分析及安全状态评估等。 面向数据挖掘的隐私保护技术主要解决高层应用中的隐私保护问题&#xff0c;致力于研究如何根据不同…

腾讯云 Web 超级播放器开发实战

目录 关于超级播放器 范例运行环境 开发前准备 设计与实现 初始化播放器 播放器重要属性设置 播放器实用事件 一些兼容性判断 浏览器支持 关于华为手机 实现代码 小结 关于超级播放器 腾讯云 Web 超级播放器 TCPlayer 可实现在手机浏览器和 PC 浏览器上播放音视频流…

域名地址是什么意思?

域名地址&#xff0c;通常简称为域名&#xff0c;是互联网上用于标识一个网站或网络服务的人类可读的名称。它相当于互联网上的门牌号码&#xff0c;使得用户能够方便地访问和记住网站的确切位置。本文将探讨域名地址的含义、其工作原理以及对网站的重要性。 域名地址的含义 …

android studio 导入github里的项目后提示:Add Configuration

原文链接&#xff1a;https://blog.csdn.net/weixin_45677723/article/details/125940912 从github上面clone项目&#xff0c;出现下图问题&#xff1a; 解决问题&#xff1a; 我这个的情况是因为多文件嵌套了&#xff0c;我用Android Studio打开的是A文件&#xff0c;而B项…

移除重复节点

题目链接 移除重复节点 题目描述 注意点 链表未排序链表长度在[0, 20000]范围内链表元素在[0, 20000]范围内 解答思路 使用Set存储访问过的链表中出现的节点值&#xff0c;当遍历到链表的某个节点在Set中出现过&#xff0c;则需要将该节点的前一个节点next指针指向该节点的…

你见过的最差的程序员是怎样的?

之前看过一个段子&#xff0c;也可能是真事。 题目是“你见过的最差的程序员是怎样的&#xff1f;” 底下有位匿名用户回答到&#xff1a;还是新人的时候&#xff0c;接手过一座屎山&#xff0c;奈何技术不足&#xff0c;也不敢乱动这座屎山&#xff0c;只好继续在屎山拉屎。…

MySQL字符串函数

1.ASCII(char)返回字符的ASCII值。 2.1个字符8个字节(byte)bit_length(str)表示的是返回字符串的字节长度即比特长度一个汉字2字符(16个字节) 3.concat(s1,s2..sn)即将s1,s2..sn连接成字符串。4.concat(sep,s1,s2,..sn)将连接的字符串用分隔符separater分 开连接。mysql> se…

InternLM2-Math-Plus全面升级,全尺寸最强的开源数学模型

总览 数学能力是大语言模型推理水平的重要体现。上海人工智能实验室在推出领先的开源数学模型InternLM2-Math的三个月之后对其进行了升级&#xff0c;发布了全新的 InternLM2-Math-Plus。升级后的 InternLM2-Math-Plus 在预训练和微调数据方面进行了全面的优化&#xff0c;显著…

FILE* file实际项目操作

遇到一个三维的二进制文件&#xff0c;通过FILE指针进行IO操作&#xff0c;并存入三维Mat中&#xff0c;通过二维Mat进行分层显示 一、打开文件 fopen_s(&file, "XXX.uint16_scv", "rb"&#xff0c;通过file文件指针打开XXX.uint16_scv文件&#xff…