leetcode 1631. 最小体力消耗路径 二分+BFS、并查集、Dijkstra算法

最小体力消耗路径

在这里插入图片描述
题目与水位上升的泳池中游泳类似

二分查找+BFS

首先,采用二分查找,确定一个体力值,再从左上角,进行BFS,查看能否到达右下角,如果不行,二分查找就往大的数字进行查找,如果可以,还要继续往小的数字进行查找,比如示例1,数字10肯定可以到达右下角,但不是最小的体力。

class Solution {
public:int dx[4] = { 0,0,-1,1 };int dy[4] = { -1,1,0,0 };int m, n;bool bfs(vector<vector<int>>& heights, vector<vector<int>> exist, int sub)//二分+BFS{exist[0][0] = 1;queue<pair<int, int>> q;q.emplace(0, 0);while (!q.empty()){auto [i, j] = q.front();q.pop();for (int k = 0; k < 4; ++k)//上下左右四个方向{int newi = i + dx[k];int newj = j + dy[k];if (newi >= 0 && newi < m && newj >= 0 && newj < n && !exist[newi][newj] && sub >= abs(heights[i][j] - heights[newi][newj])){exist[newi][newj] = 1;if (newi == m - 1 && newj == n - 1)//到达右下角{return true;}q.emplace(newi, newj);}}}return false;}int minimumEffortPath(vector<vector<int>>& heights){m = heights.size(), n = heights[0].size();vector<vector<int>> exist(m, vector<int>(n, 0));int begin = 0, end = 999999;//最大值,由题目给的边界值得出int result = 0;while (begin <= end){int mid = (begin + end) >> 1;if (bfs(heights, exist, mid)){result = mid;end = mid - 1;}else{begin = mid + 1;}}return result;}
};

二分+BFS一样适合于水位上升的题目。

二分+并查集
依然采用二分查找,确定一个值,只不过BFS换成了并查集

并查集:开辟一个数组,存储每个结点的父节点,当二分查找的某一个值,大于某两个点的差值,就将将其中一个点作为另外一个点的父节点,最后,如果可以到达右下角,那么,左上角的父节点就是右下角,此时,二分查找的值就可能是体力最小值。

这里用到了二维转一维

//并查集
class DSU
{
public:DSU(int n):parent(vector<int>(n, 0)){for (int i = 0; i < n; ++i)//父节点先初始化为自己{parent[i] = i;}}int Find(int pos){if (parent[pos] != pos)parent[pos] = Find(parent[pos]);//赋值为祖宗结点,减少搜索次数//return Find(parent[pos])parent[pos]为父节点return parent[pos];}void Union(int i, int j){parent[Find(i)] = Find(j);}bool check(int i, int j){return Find(i) == Find(j);}
private:vector<int> parent;
};class Solution {
public:int minimumEffortPath(vector<vector<int>>& heights){int m = heights.size(), n = heights[0].size();int result = 0;int begin = 0, end = 999999;//这里每次都得重新连接一遍,所以用二分,跟水池上升的游泳的题目相比while (begin <= end){int mid = (begin + end) >> 1;DSU dsu(m * n);//二维转一维for (int i = 0; i < m; ++i){for (int j = 0; j < n; ++j){if (i + 1 < m && abs(heights[i + 1][j] - heights[i][j]) <= mid)//下标方格可以到达{dsu.Union(i * n + j, (i + 1) * n + j);}if (j + 1 < n && abs(heights[i][j + 1] - heights[i][j]) <= mid)//右边方格可以到达{dsu.Union(i * n + j, i * n + j + 1);}}}if (dsu.check(0, m * n - 1)){result = mid;end = mid - 1;}else{begin = mid + 1;}}return result;}
};

在这里插入图片描述
相比水位上升的题目的并查集,这里的并查集并没有那么有趣,因为水位上升的题目的是采用从0遍历到最大值而不是二分查找,再对某一个值进行并查集。因为,由于水位上升的题目的数据是不重复的,所以可以采用哈希表记录每个值的位置,从0到最大值,只要在某个值,左上角和左下角已经连通,就是答案。比如示例一,分别使用哈希表的记录每个数字的位置,遍历水位,当水位为0时,没有可以连接的,但是水位为1时,可以连接0-》1,水位为2时,连接0-》2,水位为3时,连接1-》3,2-》3。如果这里采用二分的话,假如结果是10时,全部都被连通了,要往下查找更小的值的话,就要重新开辟parent数组。

如果,在最小体力消耗路径的题目依然采用遍历,而不是二分查找的话,虽然还是一个parent数组,当体力来到2,体力1可以连接的点已经连接好了,但是你还是避免不了两层循环遍历heights,查看哪里还可以连接,而不是像上面题目那样,直接哈希表确认2的位置,进行上下左右判断是否可以连接。

Dijkstra算法

开辟一个数组,记录源顶点(左上角)到达某一个点的最小体力
当来到一个新的顶点,消耗的体力比记载的小,就要存储起来,并且以这一个点为新起点,更新上下左右的体力值

//Dijkstra算法
class Solution {
public:int minimumEffortPath(vector<vector<int>>& heights){int m = heights.size(), n = heights[0].size();int INF = INT_MAX / 2;vector<int> dist(m * n, INF);//记录从源顶点,到达某个顶点的最小体力消耗dist[0] = 0;//顶点为0queue<tuple<int, int, int>> q;q.emplace(0, 0, 0);//分别表示最小体力差值,坐标while (!q.empty()){auto [physical, i, j] = q.front();q.pop();if (dist[i * n + j] < physical)//已经被处理过里,并且可以用更少的体力到达该位置continue;if (j + 1 < n){int nextPhysical = max(physical, abs(heights[i][j] - heights[i][j + 1]));//到达左边的方格需要的体力if (nextPhysical < dist[i * n + j + 1]){dist[i * n + j + 1] = nextPhysical;q.emplace(nextPhysical, i, j + 1);}}if (i + 1 < m){int nextPhysical = max(physical, abs(heights[i][j] - heights[i + 1][j]));//到达下边的方格需要的体力if (nextPhysical < dist[(i + 1) * n + j]){dist[(i + 1) * n + j] = nextPhysical;q.emplace(nextPhysical, i + 1, j);}}if (i - 1 >= 0){int nextPhysical = max(physical, abs(heights[i][j] - heights[i - 1][j]));//到达上边方格需要的体力if (nextPhysical < dist[(i - 1) * n + j]){dist[(i - 1) * n + j] = nextPhysical;q.emplace(nextPhysical, i - 1, j);}}if (j - 1 >= 0){int nextPhysical = max(physical, abs(heights[i][j] - heights[i][j - 1]));//到达左边方格需要的体力if (nextPhysical < dist[i * n + j - 1]){dist[i * n + j - 1] = nextPhysical;q.emplace(nextPhysical, i, j - 1);}}}return dist[m * n - 1];}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/15943.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

web及网络基础图文详解

目录 1.1TCP/IP 协议族 1.2TCP/IP 的分层管理 1.3TCP/IP通信传输流 1.4 与 HTTP 关系密切的协议 : IP、TCP 和 DNS &#xff08;1&#xff09;负责传输的 IP协议&#xff08;网络层&#xff09; &#xff08;2&#xff09;确保可靠的 TCP协议&#xff08;传输层&#xff…

一行代码实现UI拖拽的效果

演示 先来看效果吧&#xff01; 实现方式 1.首先创建一个你想拖动的UI图片 2.创建一个C#的脚本 3.编写控制脚本&#xff08;代码按我的敲就行&#xff09; 付上代码片段 public void OnDrag(PointerEventData eventData){transform.position eventData.position;} 4.添加脚…

产品经理-需求分析(三)

1. 需求分析 从业务的需要出发&#xff0c;确定业务目的和目标&#xff0c;将业务需求转为产品需求 1.1 业务需求 业务需求 业务动机 业务目标 就是最根本的动机和目标成果&#xff0c;通过这个需求解决特定的问题 1.2 产品需求 产品需求 解决方案 产品结构 产品流程…

等了10年,终于迎来RTX5/RTX4全家桶开源,开源,开源! 且免费商用

我们的V4, V5, V6 ,V7开发板都配套了大量的RTX4, RTX5教程和案例&#xff0c;从2015年发布首版RTX4内核教程以来&#xff0c;已经整整10年了。 1、制作这个RTX教程和案例&#xff0c;其实也承受了很大的压力&#xff0c;因为只有RTX内核是免费商用的&#xff0c;中间件并不免费…

AUTOMATIC1111/stable-diffusion-webui/stable-diffusion-webui-v1.9.3

配置环境介绍 目前平台集成了 Stable Diffusion WebUI 的官方镜像&#xff0c;该镜像中整合如下资源&#xff1a; GpuMall智算云 | 省钱、好用、弹性。租GPU就上GpuMall,面向AI开发者的GPU云平台 Stable Diffusion WebUI版本&#xff1a;v1.9.3 Python版本&#xff1a;3.10.…

数据结构(四)串

2024年5月26日一稿(王道P127) 定义和实现

【计算机毕业设计】基于SSM+Vue的新能源汽车在线租赁管理系统【源码+lw+部署文档】

摘 要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;新能源汽车在线租赁当然也不能排除在外。新能源汽车在线租赁是以实际运用为开发背景&#xff0c;运用软件工程开发方法&…

ChatGPT-4o 实战 如何快速分析混淆加密和webpack打包的源码

ChatGPT-4o 几个特点 一个对话拥有长时间的记忆&#xff0c;可以连续上传文件&#xff0c;让其分析&#xff0c;最大一个代码文件只能3M&#xff0c;超出3M的文件&#xff0c;可以通过split-file可以进行拆分 其次ChatGPT-4o可以生成文件的下载链接&#xff0c;这有利于大文件的…

Vue3实战笔记(37)—粒子特效登录页面

文章目录 前言一、粒子特效登录页总结 前言 上头了&#xff0c;再来一个粒子特效登录页面。 一、粒子特效登录页 登录页&#xff1a; <template><div><vue-particles id"tsparticles" particles-loaded"particlesLoaded" :options"…

2024年5月大语言模型论文推荐:模型优化、缩放到推理、基准测试和增强性能

前一篇文章总结了关于计算机视觉方面的论文&#xff0c;这篇文章将要总结了2024年5月发表的一些最重要的大语言模型的论文。这些论文涵盖了塑造下一代语言模型的各种主题&#xff0c;从模型优化和缩放到推理、基准测试和增强性能。 大型语言模型(llm)发展迅速&#xff0c;跟上…

【idea插件】查询maven小工具——maven-search

1、简介 该插件提供一个查询工具方便在IDE中快速查找maven依赖&#xff0c;定制模糊查找算法。支持查找全网类。注&#xff1a;该功能需要连接网络。所有数据来源于源码阅读网 2、使用方法 开启菜单&#xff1a;Tools / Maven Search 快捷键 &#xff1a;Shift Control M 或…

3款简洁个人网站引导页(附带源码)

3款个人网站引导页 效果图及部分源码1.个人页2.引导页3.导航页 领取源码下期更新预报 效果图及部分源码 1.个人页 部分源码 * {margin: 0;padding: 0; }body {background-image: linear-gradient(to left, rgba(255, 0, 149, 0.2), rgba(0, 247, 255, 0.2)), url(../img/bg.j…

新建一个STM32的工程

一、SMT32开发方式 1、基于寄存器的方式&#xff1a;和51单片机开发方式一样&#xff0c;是用程序直接配置寄存器&#xff0c;来达到我们想要的功能&#xff0c;这种方式最底层、最直接、效率会更高一些&#xff0c;但是STM32的结构复杂、寄存器太多&#xff0c;所以不推荐基于…

【408真题】2009-15

“接”是针对题目进行必要的分析&#xff0c;比较简略&#xff1b; “化”是对题目中所涉及到的知识点进行详细解释&#xff1b; “发”是对此题型的解题套路总结&#xff0c;并结合历年真题或者典型例题进行运用。 涉及到的知识全部来源于王道各科教材&#xff08;2025版&…

OmicsTools新增了22种发表级的配色方案

OmicsTools新增了22种发表级的配色方案 我开发了一款本地电脑无限使用的零代码生信数据分析作软图神器电脑软件OmicsTools&#xff0c;欢迎大家使用OmicsTools进行生物医学科研数据分析和作图&#xff0c;该软件件能让大家在不需要任何编程和代码编写的基础上&#xff0c;分析…

电子电器架构 - AUTOSAR软件架构Current Features in a Nutshell

电子电器架构 - AUTOSAR软件架构Current Features in a Nutshell 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的…

【笔记】Pytorch安装配置

参考视频 安装前建议预留至少10个G的空间&#xff0c;会省下很多麻烦 查看安装是否成功&#xff0c;可以在Anaconda Prompt里输入conda list查看conda环境是否配置了pytorch/torchvision 1.安装anaconda 2.安装 CUDA CUDA在官网直接安装即可&#xff0c;需要先查看自己电脑…

云原生安全攻防--快速识别虚拟机、Docker和K8s集群环境

今天我们将一起学习一个非常实用的技巧&#xff0c;快速识别云原生环境。 对于攻击者而言&#xff0c;随着云原生应用普及&#xff0c;当攻击者获得一个shell权限时&#xff0c;那么这个shell可能处于虚拟主机里&#xff0c;也有可能在一个Docker环境里&#xff0c;或者在K8s集…

创客贴:极简高效的智能平面设计神器测评

给大家推荐一款智能平面设计作图软件——创客贴&#xff0c;简单来说&#xff0c;就是给那些需要频繁进行平面设计的人提供帮助的。它作为一款在线图片编辑器&#xff0c;可以免费使用&#xff0c;让你轻松进行创意设计。创客贴不仅提供了海量正版设计模板和图片素材&#xff0…

vue3 依赖-组件tablepage-vue3版本1.1.2~1.1.5更新内容

github求⭐ 可通过github 地址和npm 地址查看全部内容 vue3 依赖-组件tablepage-vue3说明文档&#xff0c;列表页快速开发&#xff0c;使用思路及范例-汇总 vue3 依赖-组件tablepage-vue3说明文档&#xff0c;列表页快速开发&#xff0c;使用思路及范例&#xff08;Ⅰ&#…