ISCC——AI

得到一个T4.pyc

回编译一下

得到下面代码


import base64def encrypt_and_compare(user_input, offset_str, target_base64):if len(user_input) != 24:return 'Please enter a string with a length of 24'encrypted = Nonefor i, char in enumerate(user_input):offset = int(offset_str[i])ascii_val = ord(char)if i % 2 == 0:new_ascii = ascii_val + offsetelse:new_ascii = ascii_val - offsetencrypted_char = chr(new_ascii ^ offset)encrypted.append(encrypted_char)encrypted_bytes = ''.join(encrypted).encode('utf-8')encrypted_base64 = base64.b64encode(encrypted_bytes).decode('utf-8')print('Encrypted result:{}'.format(encrypted_base64))if encrypted_base64 == target_base64:return 'Find key'return Noneoffset_str = '123456789012345678901234'
target_base64 = 'TWF/c1sse19GMW5gYVRoWWFrZ3lhd0B9'
user_input = input('Please enter a string with a length of 24:')
result = encrypt_and_compare(user_input, offset_str, target_base64)
print(result)

很简单逻辑,你解密出来就是第一段密码(这个我不想再写了,相信各位都会,不会私信我,嘿嘿)

第一段密码拿去解压缩出来

就有这些东西

这是一个处理png文件的模型

我让AI修改一下(我肯定是不会的)

import torch
from torch import nn
from torchvision import transforms
from PIL import Image
import os# 定义网络结构
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(28 * 28, 128)self.fc2 = nn.Linear(128, 64)self.fc3 = nn.Linear(64, 10)def forward(self, x):x = x.view(-1, 28 * 28)x = torch.relu(self.fc1(x))x = torch.relu(self.fc2(x))x = self.fc3(x)return x# 直接加载整个模型实例
model_instance = torch.load('D:/CTF/problem/iscc/AI/AI-23/confused_digit_recognition_model.pt', map_location='cpu')# 确保模型处于评估模式
model_instance.eval()# 定义图像预处理变换
transform = transforms.Compose([transforms.Grayscale(num_output_channels=1),transforms.Resize((28, 28)),transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))
])# 图像文件所在目录
image_folder = "D:\\CTF\\problem\\iscc\\AI\\AI-23\\"# 遍历编号从1到24的图像文件并进行预测
for i in range(1, 25):# 构建完整的图像路径image_path = os.path.join(image_folder, f"{i}.png")try:# 加载并预处理图像image = Image.open(image_path)image = transform(image)image = image.unsqueeze(0)# 模型预测with torch.no_grad():outputs = model_instance(image)_, predicted = torch.max(outputs.data, 1)# 打印预测结果print( predicted.item(),end='')except IOError as e:print(f"Error opening {image_path}: {e}")except Exception as e:print(f"An error occurred during prediction for {image_path}: {e}")

得到第二段密码

这就是对照表的内容啦

然后写个脚本就OK

def toint(a):b=ord(a)-ord('0')return b
a='384362683985682257091427'
for i in range(24):enc=toint(a[i])if(enc==0):print('@nd',end='')elif(enc==1):print('a!',end='')elif (enc == 2):print('_',end='')elif (enc == 3):print('F',end='')elif (enc == 4):print('SSS',end='')elif (enc == 5):print('W@',end='')elif (enc == 6):print('K',end='')elif (enc == 7):print('1',end='')elif (enc == 8):print('C',end='')elif (enc == 9):print('d',end='')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/15875.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity开发——XLua热更新之Hotfix配置(包含xlua获取与导入)

一、Git上获取xlua 最新的xlua包,下载地址链接:https://github.com/Tencent/xLua 二、Unity添加xlua 解压xlua压缩包后,将xlua里的Assets里的文件直接复制进Unity的Assets文件夹下。 成功导入后,unity工具栏会出现xlua选项。 …

到底该用英文括号还是中文括号?

这篇博客写的还挺详细的,不错。

TCP/IP协议族

基于这张图片的一篇blog TCP/IP模型通常被分为四个层次:应用层、传输层、网络层和网络接口层。在这个模型中,不同的网络协议负责完成不同的任务,以确保数据可以在网络中高效、可靠地传输。以下是对这张图中每个协议的解释: 应用层…

Tensorflow2.0笔记 - AutoEncoder做FashionMnist数据集训练

本笔记记录自编码器做FashionMnist数据集训练,关于autoencoder的原理,请自行百度。 import os import time import tensorflow as tf from tensorflow import keras from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics, …

Nature子刊 | 首个 双语脑机接口设备能解码西班牙语和英语单词

大脑植入装置首次帮助一名无法用语言表达的双语人士用两种语言进行交流。与大脑植入体相连的AI系统可以实时解码该人试图用西班牙语或英语表达的意思。 这项研究结果发表在5月20日的《Nature Biomedical Engineering》杂志上,让人们深入了解了我们的大脑是如何处理语…

使用printf的两种方法,解决printf不能使用的问题

使用printf的两种方法,解决printf不能使用的问题 一、微库法 我们使用printf前要加上重定向fputc //重定义fputc函数 int fputc(int ch, FILE *f) { while((USART1->SR&0X40)0);//循环发送,直到发送完毕 USART1->DR (uint8_t) ch; return…

Spring MVC+mybatis项目入门:旅游网(四)用户注册——mybatis的配置与使用以及Spring MVC重定向

个人博客:Spring MVCmybatis项目入门:旅游网(四)用户注册2-持久化 | iwtss blog 先看这个! 这是18年的文章,回收站里恢复的,现阶段看基本是没有参考意义的,技术老旧脱离时代(2024年…

C#【进阶】特殊语法

特殊语法、值和引用类型 特殊语法 文章目录 特殊语法1、var隐式类型2、设置对象初始值3、设置集合初始值4、匿名类型5、可空类型6、空合并操作符7、内插字符串8、单句逻辑简略写法 值和引用类型1、判断值和引用类型2、语句块3、变量的生命周期4、结构体中的值和引用5、类中的值…

重学java 45.多线程 下 总结 定时器_Timer

人开始反向思考 —— 24.5.26 定时器_Timer 1.概述:定时器 2.构造: Timer() 3.方法: void schedule(TimerTask task, Date firstTime, long period) task:抽象类,是Runnable的实现类 firstTime:从什么时间开始执行 period:每隔多长时间执行一次…

fpga问题整理

1、quartus联合modelsim仿真 无波形 问题: modelsim仿真无波形,打开transcript可以看到警告。 警告: # ** Warning: (vlog-2083) f:/program files/altera/ 13.1/quartus/ eda/sim_lib/ altera_lnsim.sv(22728): Carriage return (0x0D) is…

MySQL之Schema与数据类型优化(五)

Schema与数据类型优化 特殊类型数据 某些类型的数据并不直接与内置类型一致。低于秒级精度的时间戳就是一个例子。另外一个例子是一个IPv4地址。人们经常使用VARCHAR(15)列存储IP地址。然而,它们实际上是32位无符号整数。不是字符串。用小数点将地址分成四段的表示…

用AI比赛助手降维打击数学建模,比赛过程详细介绍,这保研不就稳了吗

数学建模是个小众的赛道,可能很多大学生不知道,简单来说:他能薅学分、保研加分、毕业好找工作(简历上写一辈子),尤其是基于GPT-4o模型,简直对他们是降维打击。 数学建模每年的比赛非常多,像国赛、美赛、深…

asrpro softspi SD卡读写

采样 50M 1M;采样时间足够长,采样频率1M 避免信息遗漏 引脚 cs pa2 mosi pa3 sck pa5 miso pa6 vcc ->5v gnd ->gnd ARDUINO SD库与移植(原本是打算移值tw ch32v103的sd库的,但没有对比,只能选择arduino ; …

Java进阶学习笔记22——泛型方法、通配符和上下限

泛型方法: package cn.ensource.d11_generics_method;public class Test {public static void main(String[] args) {// 泛型方法String res test("Java");System.out.println(res);Dog dog1 test(new Dog());System.out.println(dog1);}// 泛型方法pub…

手机上制作证件照

最近由于需要给老姐弄一组证件照,找了一通手机上的软件,找到一款性价比较高的,详细流程记录下来。vx小程序上搜索"泰世茂证件照",打开首页如下图所示∶ 单击"开始制作" ,选择一个证件照类别&#…

Paddle 傅里叶变换基础及领域应用

Paddle 傅里叶变换基础及领域应用 1. 傅里叶变换基础 1.1 傅里叶变换简介 傅里叶变换是一种重要的信号处理技术,它可以将一个信号从时域转换到频域。在频域中,信号的频率特性更加明显,有利于分析和处理。傅里叶变换的基本思想是将一个信号…

基于Rsoft的Fullwave仿真模块进行双芯波导能量耦合与波分复用

Rsoft中的Fullwave仿真模块可以更精确的仿真微小结构,按照建立模型,设置参数,监测能量,优化结构的思路对其进行仿真。图1是在Fullwave模块中建立的双芯波导仿真模型。在模型中设置好折射率、光源、光路、监测器等便可以进行仿真。…

【竞技宝】英超:滕哈格命真硬!足总杯夺冠获欧联资格

足总杯决赛结束,曼联爆冷2比1击败联赛冠军曼城夺冠,滕哈格再一次用顶级理解带队拿到杯赛冠军。赛前曼彻斯特当地有媒体爆料,曼联管理层已经决定要在足总杯决赛之后解雇滕哈格,这个消息让不少球迷都很担心滕哈格的状态。但是荷兰主帅凭借强大的内心,带领球队击败了不可一世的曼城…

买房送户口!多城加入“抢人大战”

业内人士认为,近期,多地推出的购房落户政策已区别于此前的人才落户政策,更聚焦于住房消费,降低了落户门槛,体现了各地对导入人口的重视,有利于人才流动,推动新型城镇化建设。 千万人口城市“后…