1301-习题1-1高等数学

1. 求下列函数的自然定义域

自然定义域就是使函数有意义的定义域。

常见自然定义域:

  • 开根号 x \sqrt x x x ≥ 0 x \ge 0 x0
  • 自变量为分式的分母 1 x \frac{1}{x} x1 x ≠ 0 x \ne 0 x=0
  • 三角函数 tan ⁡ x cot ⁡ x \tan x \cot x tanxcotx x ≠ π 2 + k π x\ne \frac{\pi}{2}+k\pi x=2π+
  • 反三角函数 arcsin ⁡ x , arccos ⁡ x \arcsin x,\arccos x arcsinx,arccosx − 1 ≤ x ≤ 1 -1\le x\le 1 1x1
  • 反三角函数 arctan ⁡ x \arctan x arctanx x ∈ R x\in R xR
  • 对数函数 ln ⁡ x \ln x lnx x > 0 x\gt 0 x>0

(3) y = 1 x − 1 − x 2 y=\frac{1}{x}-\sqrt{1-x^2} y=x11x2
解: { x ≠ 0 , 1 − x 2 ≥ 0 得 − 1 ≤ x ≤ 1 且 x ≠ 0 ∴ D = [ − 1 , 0 ) ∪ ( 0 , 1 ] 解:\\ \begin{cases} x\ne 0,\\ 1-x^2\ge 0\\ \end{cases}\\ 得 -1\le x\le 1且x\ne 0\\ \therefore D=[-1,0)\cup(0,1] 解:{x=0,1x201x1x=0D=[1,0)(0,1]
(8) y = 3 − x + arctan ⁡ 1 x y=\sqrt{3-x}+\arctan{\frac{1}{x}} y=3x +arctanx1
解: 该函数由 y 1 = 3 − x 与 y 2 = arctan ⁡ 1 x 复合而成,所以应同时满足 { 3 − x ≥ 0 , x ≠ 0 得 x ≤ 3 且 x ≠ 0 ∴ 定义域 D = ( − ∞ , 0 ) ∪ ( 0 , 3 ] 解:\\ 该函数由y_1=\sqrt{3-x}与y_2=\arctan{\frac{1}{x}}复合而成,所以应同时满足\\ \begin{cases} 3-x\ge 0,\\ x\ne 0\\ \end{cases}\\ 得 x\le 3且x\ne 0\\ \therefore 定义域D = (-\infty, 0)\cup (0,3] 解:该函数由y1=3x y2=arctanx1复合而成,所以应同时满足{3x0,x=0x3x=0定义域D=(,0)(0,3]

2. 下列各题中,函数 f ( x ) 和 g ( x ) f(x)和g(x) f(x)g(x)是否相同?为什么?

函数相同满足条件:定义域相同;函数关系相同;

Tips: 变量符号可不同

(3) f ( x ) = x 4 − x 3 3 , g ( x ) = x x − 1 3 f(x)=\sqrt[3]{x^4-x^3},g(x)=x\sqrt[3]{x-1} f(x)=3x4x3 ,g(x)=x3x1
f ( x ) 与 g ( x ) 相同 f ( x ) = x 4 − x 3 3 , x ∈ R 化简得 : f ( x ) = x x − 1 3 g ( x ) = x x − 1 3 , x ∈ R 定义域相同,函数关系相同,所以 f ( x ) 与 g ( x ) 相同 f(x)与g(x)相同\\ f(x)=\sqrt[3]{x^4-x^3},x\in R\\ 化简得:f(x)=x\sqrt[3]{x-1}\\ g(x)=x\sqrt[3]{x-1},x\in R\\ 定义域相同,函数关系相同,所以f(x)与g(x)相同 f(x)g(x)相同f(x)=3x4x3 ,xR化简得:f(x)=x3x1 g(x)=x3x1 ,xR定义域相同,函数关系相同,所以f(x)g(x)相同
(4) f ( x ) = 1 , g ( x ) = sec ⁡ 2 x − tan ⁡ 2 x f(x)=1,g(x)=\sec^2x-\tan^2x f(x)=1,g(x)=sec2xtan2x
解: f ( x ) 定义域为 : D f = R g ( x ) 的定义域为 D g = ( − π 2 + k π , π 2 + k π ) , k ∈ Z ∴ f ( x ) 与 g ( x ) 不同 解:\\ f(x)定义域为:D_f=R\\ g(x)的定义域为D_g=(-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi),k\in Z\\ \therefore f(x)与g(x)不同 解:f(x)定义域为:Df=Rg(x)的定义域为Dg=(2π+,2π+),kZf(x)g(x)不同

3. 分段三角函数值和图形

ϕ ( x ) = { ∣ sin ⁡ x ∣ , ∣ x ∣ < π 3 , 0 , ∣ x ∣ ≥ π 3 \phi(x)=\begin{cases} |\sin x|,\quad|x|\lt \frac{\pi}{3},\\ 0,\qquad\quad |x|\ge \frac{\pi}{3} \end{cases} ϕ(x)={sinx,x<3π,0,x3π

ϕ ( π 6 ) , ϕ ( π 4 ) , ϕ ( − π 4 ) , ϕ ( − 2 ) \phi(\frac{\pi}{6}),\phi(\frac{\pi}{4}),\phi(-\frac{\pi}{4}),\phi(-2) ϕ(6π),ϕ(4π),ϕ(4π),ϕ(2),并做出函数 y = ϕ ( x ) y=\phi(x) y=ϕ(x)的图形
解: ϕ ( π 6 ) = ∣ sin ⁡ π 6 ∣ = 1 2 ϕ ( π 4 ) = 2 2 ϕ ( − π 4 ) = 2 2 ϕ ( − 2 ) = 0 解:\\ \phi(\frac{\pi}{6})=|\sin \frac{\pi}{6}|=\frac{1}{2}\\ \phi(\frac{\pi}{4})=\frac{\sqrt2}{2}\\ \phi(-\frac{\pi}{4})=\frac{\sqrt2}{2}\\ \phi(-2)=0 解:ϕ(6π)=sin6π=21ϕ(4π)=22 ϕ(4π)=22 ϕ(2)=0
图形如下图所示:

在这里插入图片描述

4. 试证下列函数在指定区间内的单调性:

(1) y = x 1 − x , ( − ∞ , 1 ) y=\frac{x}{1-x},(-\infty,1) y=1xx,(,1) (2) y = x + ln ⁡ x , ( 0 , + ∞ ) y=x+\ln x,(0,+\infty) y=x+lnx,(0,+)
证明: ( 1 ) 设置 x 1 , x 2 ∈ ( − ∞ , 1 ) , 且 x 1 < x 2 f ( x 1 ) − f ( x 2 ) = x 1 1 − x 1 − x 2 1 − x 2 = x 1 − x 2 ( 1 − x 1 ) ( 1 − x 2 ) < 0 ∴ y = x 1 − x 在区间 ( − ∞ , 1 ) 上单调递增 ( 2 )设置 x 1 , x 2 ∈ ( 0 , + ∞ ) , 且 x 1 < x 2 f ( x 1 ) − f ( x 2 ) = x 1 + ln ⁡ x 1 − ( x 2 + ln ⁡ x 2 ) = ( x 1 − x 2 ) + ln ⁡ x 1 x 2 < 0 ∴ y = x + ln ⁡ x 在区间 ( 0 , + ∞ ) 区间上单调递增 证明:\\ (1)设置x_1,x_2\in (-\infty,1),且x_1\lt x_2\\ f(x_1)-f(x_2)=\frac{x_1}{1-x_1}-\frac{x_2}{1-x_2}\\ =\frac{x_1-x_2}{(1-x_1)(1-x_2)}\lt 0\\ \therefore y=\frac{x}{1-x}在区间(-\infty,1)上单调递增\\ (2)设置x_1,x_2\in (0,+\infty),且x_1\lt x_2\\ f(x_1)-f(x_2)=x_1+\ln x_1-(x_2+\ln x_2)\\ =(x_1-x_2)+\ln\frac{x_1}{x_2}\lt 0\\ \therefore y=x+\ln x在区间(0,+\infty)区间上单调递增 证明:(1)设置x1,x2(,1),x1<x2f(x1)f(x2)=1x1x11x2x2=(1x1)(1x2)x1x2<0y=1xx在区间(,1)上单调递增2)设置x1,x2(0,+),x1<x2f(x1)f(x2)=x1+lnx1(x2+lnx2)=(x1x2)+lnx2x1<0y=x+lnx在区间(0,+)区间上单调递增

5. 奇偶性与单调性

设f(x)为定义在 ( − l , l ) (-l,l) (l,l)内的奇函数,若f(x)在 ( 0 , l ) (0,l) (0,l)内单调增加,证明f(x)在 ( − l , 0 ) (-l,0) (l,0)内也单调递增
证明: 设 x 1 , x 2 ∈ ( 0 , l ) , 且 x 1 < x 2 则 − x 1 , − x 2 ∈ ( − l , 0 ) , 且 − x 1 > − x 2 ∵ f ( x ) 在 ( − l , l ) 内为奇函数,则 f ( x ) = − f ( − x ) f ( x ) 在 ( 0 , l ) 内单调增加 f ( x 1 ) < f ( x 2 ) 即 − f ( − x 1 ) < − f ( − x 2 ) = > f ( − x 1 ) > f ( − x 2 ) 即 f ( x ) 在 ( − 1 , 0 ) 内也单调增加 证明:\\ 设x_1,x_2\in(0,l),且x_1\lt x_2\\ 则 -x_1,-x_2\in(-l,0),且-x_1\gt -x_2\\ \because f(x)在(-l,l)内为奇函数,则\\ f(x)=-f(-x)\\ f(x)在(0,l)内单调增加\\ f(x_1)\lt f(x_2)\\ 即-f(-x_1)\lt -f(-x_2)=>f(-x_1)\gt f(-x_2)\\ 即f(x)在(-1,0)内也单调增加 证明:x1,x2(0,l),x1<x2x1,x2(l,0),x1>x2f(x)(l,l)内为奇函数,则f(x)=f(x)f(x)(0,l)内单调增加f(x1)<f(x2)f(x1)<f(x2)=>f(x1)>f(x2)f(x)(1,0)内也单调增加

6. 奇偶运算结果的奇偶性

只给结论,不再证明

  1. 两个偶函数的和是偶函数,两个奇函数的和是奇函数。
  2. 两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数。

8.周期函数的周期

(3) 1 + sin ⁡ ( π x ) 1+\sin(\pi x) 1+sin(πx) 周期 2 (5) sin ⁡ 2 x \sin^2x sin2x
sin ⁡ 2 x = 1 − cos ⁡ 2 x 2 周期为 π \sin^2x = \frac{1-\cos2x}{2}\\ 周期为\pi sin2x=21cos2x周期为π

9.求下列函数的反函数

(2) y = 1 − x 1 + x y=\frac{1-x}{1+x} y=1+x1x
解: y = 1 − x 1 + x y ( 1 + x ) = 1 − x y x + x = 1 − y x = 1 − y 1 + y , y ≠ − 1 f − 1 ( x ) = 1 − x 1 + x , x ≠ − 1 解:\\ y=\frac{1-x}{1+x}\\ y(1+x)=1-x\\ yx+x=1-y\\ x=\frac{1-y}{1+y},y\not=-1\\ f^{-1}(x)=\frac{1-x}{1+x},x\not=-1 解:y=1+x1xy(1+x)=1xyx+x=1yx=1+y1y,y=1f1(x)=1+x1x,x=1

(3) y = a x + b c x + d ( a d − b c ≠ 0 ) y=\frac{ax+b}{cx+d}(ad-bc\not=0) y=cx+dax+b(adbc=0)
解: y = a x + b c x + d y ( c x + d ) = a x + b c y x − a x = b − d y x = − d y + b c y − a 解:\\ y=\frac{ax+b}{cx+d}\\ y(cx+d)=ax+b\\ cyx-ax=b-dy\\ x=\frac{-dy+b}{cy-a} 解:y=cx+dax+by(cx+d)=ax+bcyxax=bdyx=cyady+b
(6) y = 2 x 2 x + 1 y=\frac{2^x}{2^x+1} y=2x+12x
解: y = 2 x 2 x + 1 2 x ( 1 − y ) = y x = log ⁡ 2 ( y 1 − y ) f − 1 ( x ) = log ⁡ 2 ( y 1 − y ) 解:\\ y = \frac{2^x}{2^x+1}\\ 2^x(1-y)=y\\ x=\log_2(\frac{y}{1-y})\\ f^{-1}(x)=\log_2(\frac{y}{1-y}) 解:y=2x+12x2x(1y)=yx=log2(1yy)f1(x)=log2(1yy)

结语

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.p16-18.

[2]同济《高等数学》第七版-课后题逐题讲解[CP/OL].2023-07-26.p1.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/15822.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++奇迹之旅:vector使用方法以及操作技巧

文章目录 &#x1f4dd;前言&#x1f320; 熟悉vector&#x1f309;使用vector &#x1f320;构造函数&#x1f309;vector遍历 &#x1f320;operator[]&#x1f309;迭代器 &#x1f320;Capacity容量操作&#x1f309; size()&#x1f309; capacity()&#x1f309;resize()…

C语言中的七种常用排序

今天&#xff0c;为大家整理了C语言中几种常用的排序&#xff0c;以及他们在实际中的运用&#xff08;有Bug请在下方评论&#xff09;&#xff1a; 一.桶排序 #include <stdio.h> int main() {int book[1001],i,j,t,n;for(i0;i<1000;i)book[i]0;scanf("%d"…

二进制中1的个数c++

题目描述 计算鸭给定一个十进制非负整数 NN&#xff0c;求其对应 22 进制数中 11 的个数。 输入 输入包含一行&#xff0c;包含一个非负整数 NN。(N < 10^9) 输出 输出一行&#xff0c;包含一个整数&#xff0c;表示 NN 的 22 进制表示中 11 的个数。 样例输入 100 …

001集—创建、写入、读取文件fileopen函数——vb.net

此实例为在指定路径下创建一个txt文本文件&#xff0c;在文本文件内输入文字&#xff0c;并弹窗显示输入文字&#xff0c;代码如下&#xff1a; Public Class Form1Private Sub Button2_Click(sender As Object, e As EventArgs) Handles Button2.ClickDim testcontent As Str…

英语学习笔记26——Where is it?

Where is it? 它在那里&#xff1f; 课文部分

springboot+vue+mybatis校园兼职平台+PPT+论文+讲解+售后

社会的发展和科学技术的进步&#xff0c;互联网技术越来越受欢迎。网络计算机的生活方式逐渐受到广大人民群众的喜爱&#xff0c;也逐渐进入了每个学生的使用。互联网具有便利性&#xff0c;速度快&#xff0c;效率高&#xff0c;成本低等优点。 因此&#xff0c;构建符合自己要…

opencv进阶 ——(五)图像处理之马赛克

一、遍历图像并对每个马赛克区域进行像素化处理 for (int y 0; y < image.rows; y blockSize) {for (int x 0; x < image.cols; x blockSize) {cv::Rect rect cv::Rect(x, y, std::min(blockSize, image.cols - x), std::min(blockSize, image.rows - y));cv::Scal…

新建一个STM32工程(精简版)

一、新建一个STM32工程 二、建立三个文件夹 1、Start文件夹里的东西 &#xff08;1&#xff09;启动文件&#xff1a;STM32入门教程资料\固件库\STM32F10x_StdPeriph_Lib_V3.5.0\Libraries\CMSIS\CM3\DeviceSupport\ST\STM32F10x\startup\arm &#xff08;2&#xff09;STM32…

005、API_数据结构

键的数据结构类型&#xff0c;它们分别是&#xff1a; string&#xff08;字符串&#xff09;、hash&#xff08;哈希&#xff09;、list&#xff08;列表&#xff09;、set&#xff08;集合&#xff09;、zset&#xff08;有序集 合&#xff09;&#xff0c;这些只是Redis对外…

从0开始学统计-蒙彼利埃尔悖论与条件概率

1.什么叫均衡可比&#xff1f; "均衡可比"指的是在进行比较时&#xff0c;确保所比较的对象或情况具有相似的特征和条件&#xff0c;以保持比较的公正性和准确性。这个概念通常应用于研究设计和数据分析中&#xff0c;以确保比较结果的可信度和有效性。 在研究中&a…

P6160 [Cnoi2020] 向量

[Cnoi2020] 向量 题目背景 向量(vector)&#xff0c;指具有大小(Magnitude)和方向(Direction) 的量。 与向量对应的量叫做数量(Scalar)&#xff0c;数量只有大小&#xff0c;没有方向。 对于 Cirno 来说&#xff0c;整天环绕氷屋的旋转 Sangetsusei 们是向量而不是数量。 Sun…

【JavaSE】/*类和对象(上)*/

目录 一、什么是类&#xff0c;什么是对象 二、类和对象的关系 三、学习类和对象的目的 四、怎样创建一个类 4.1 语法形式 4.2 创建示例 示例一&#xff1a;日期对象 示例二&#xff1a;小狗对象 示例三&#xff1a;学生对象 4.3 注意事项 4.4 修改public修饰的主类…

信号量——多线程

信号量的本质就是一个计数器 在多线程访问临界资源的时候&#xff0c;如果临界资源中又有很多份分好的资源&#xff0c;那么就可以通过信号量来表示里面还有多少份资源&#xff0c;且每份资源只有一个线程可以访问 线程申请信号量成功&#xff0c;就一定有一份资源是你的&…

python机器学习及深度学习在空间模拟与时间预测

原文链接https://mp.weixin.qq.com/s?__bizMzUyNzczMTI4Mg&mid2247628504&idx2&sn6fe3aeb9f63203cfe941a6bb63b49b85&chksmfa77a9e5cd0020f3aa4f01887e75b15096a182c2b5b42c1044787aa285c650f1469a0ef28aec&token2124656491&langzh_CN&scene21#we…

网络模型—BIO、NIO、IO多路复用、信号驱动IO、异步IO

一、用户空间和内核空间 以Linux系统为例&#xff0c;ubuntu和CentOS是Linux的两种比较常见的发行版&#xff0c;任何Linux发行版&#xff0c;其系统内核都是Linux。我们在发行版上操作应用&#xff0c;如Redis、Mysql等其实是无法直接执行访问计算机硬件(如cpu&#xff0c;内存…

勒索软件分析_Conti

0. Conti介绍 勒索软件即服务&#xff08;Ransomware as a Service&#xff0c;RaaS&#xff09;变体 Conti 推出还不到两年&#xff0c;已经进行了第七次迭代。Conti被证明是一种敏捷而熟练的恶意软件威胁&#xff0c;能够自主和引导操作&#xff0c;并具有无与伦比的加密速度…

详细分析Element中的Drawer(附Demo)

目录 前言1. 基本知识2. Demo2.1 基本用法2.2 不同方向2.3 自定义大小2.4 嵌入表单2.5 嵌套抽屉 3. 实战4. Element Plus&#xff08;Drawer&#xff09; 前言 对于该组件针对Vue2比较多&#xff0c;而Element Plus中的Drawer针对Vue3比较多 此处的Demo主要偏向Vue2 后续的El…

探索 Mistral 新发布的具有原生函数调用功能的 7B 模型【附notebook文件】

引言 Mistral 发布了新版的 7B 模型&#xff0c;这次更新引入了原生函数调用功能。对于开发者和 AI 爱好者来说&#xff0c;这一更新极具吸引力&#xff0c;因为它增强了模型的功能和实用性。在这篇博客中&#xff0c;我们将深入探讨这些新功能&#xff0c;展示如何使用该模型…

小程序-修改用户头像

1、调用拍照 / 选择图片 // 修改头像 const onAvatarChange () > { // 调用拍照 / 选择图片 uni.chooseMedia({ // 文件个数 count: 1, // 文件类型 mediaType: [image], success: (res) > { console.log(res) // 本地临时文件路径 (本地路径) const { tempFilePath } …

wordpress主题模板兔Modown 9.1开心版附送erphpdown v17.1插件

Modown 9.1开心版是一款模板兔开发的wordpress主题可&#xff0c;持续更新多年&#xff0c;优秀的资源下载类主题该模板基于Erphpdown&#xff0c;可以销售软件、视频教程、文章等等&#xff0c;通过主题和插件结合可以实现付费下载、付费阅读等功能&#xff0c;配合模板兔的一…