【Python大数据】PySpark

CSDN不支持多个资源绑定,另外两个数据文件下载:

订单数据-json.zip

search-log.zip


Apache Spark是用于大规模数据(large-scala data)处理的统一(unified)分析引擎

简单来说,Spark是一款分布式的计算框架,用于调度成百上千的服务器集群,计算TB、PB乃至EB级别的海量数据

而Python语言则是Spark重点支持的方向

使用pip安装PySpark库:pip install pyspark

安装好之后让我们简单使用一下吧

from pyspark import SparkConf,SparkContext
# 创建SparkConf类对象
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")
# 基于SparkConf类对象创建SparkContext对象
sc = SparkContext(conf=conf)
# 打印PySpark的运行版本
print(sc.version)
# 停止SparkContext对象的运行(停止PySpark程序)
sc.stop()

PySpark的编程,主要分为如下三大步骤:

步骤

RDD对象&&数据输入

RDD全称为:弹性分布式数据集(Resilient Distributed Datasets)

PySpark针对数据的处理,都是以RDD对象作为载体,即:

  • 数据存储在RDD内
  • 各类数据的计算方法,也都是RDD的成员方法
  • RDD的数据计算方法,返回值依旧是RDD对象

PySpark支持通过SparkContext对象的parallelize成员方法,将Python中的容器转换为PySpark的RDD对象

from pyspark import SparkConf,SparkContext
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")
sc = SparkContext(conf=conf)
# 通过parallelize方法将Python对象加载到Spark内,成为RDD对象
rdd1 = sc.parallelize([1,2,3,4,5])
rdd2 = sc.parallelize((1,2,3,4,5))
rdd3 = sc.parallelize("root")
rdd4 = sc.parallelize({1,2,3,4,5})
rdd5 = sc.parallelize({"company":"bilibili","work":"sleep"})
# 查看RDD里面有什么内容用collect()方法
print(rdd1.collect())
print(rdd2.collect())
print(rdd3.collect())
print(rdd4.collect())
print(rdd5.collect())
sc.stop()

运行结果:

[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]
['r', 'o', 'o', 't']
[1, 2, 3, 4, 5]
['company', 'work']

注意

  • 字符串会被拆分成一个个的字符,存入RDD对象
  • 字典仅有key会被存入RDD对象

读取文件转RDD对象

PySpark也支持通过SparkContext入口对象来读取文件,构建出RDD对象

rdd = sc.textFile(文件路径)

数据计算方法

RDD对象内置成员方法(算子)

map算子

# map算子
from pyspark import SparkConf,SparkContext
import os
os.environ['PYSPARK_PYTHON'] = "C:/Users/Leon/AppData/Local/Programs/Python/Python310/python310.exe"
# 路径写自己的路径,注意是反斜杠"/",一般默认是"python.exe",笔者这样写是因为重命名过
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")
sc = SparkContext(conf=conf)
rdd = sc.parallelize([1,2,3,4,5])
'''通过map方法将全部数据都乘以10
def func(data):return data*10
rdd2 = rdd.map(func)
'''
rdd2 = rdd.map(lambda x: x*10)
'''链式调用 返回值类型还是此类型可以继续在后面"."
例如上面的:conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")
那么将全部数据乘以10再加1就可以这样写
rdd2 = rdd.map(lambda x: x*10).map(lambda x: x+1)
'''
print(rdd2.collect())
sc.stop()

运行结果:

[10, 20, 30, 40, 50]

flatMap算子

对rdd执行map操作,然后进行"解除嵌套"操作

# 嵌套的list
lst = [[1,2,3],[4,5,6],[7,8,9]]
# 如果解除了嵌套
lst = [1,2,3,4,5,6,7,8,9]

示例:

# flatMap算子
from pyspark import SparkConf,SparkContext
import os
os.environ['PYSPARK_PYTHON'] = "C:/Users/Leon/AppData/Local/Programs/Python/Python310/python310.exe"
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")
sc = SparkContext(conf=conf)
rdd = sc.parallelize(["apple banana orange","tomato potato","wine beer"])
# 需求:将rdd数据里面的单词一个个提取出来
rdd1 = rdd.map(lambda x: x.split(" "))
print(rdd1.collect())
# 输出结果:[['apple', 'banana', 'orange'], ['tomato', 'potato'], ['wine', 'beer']]
# 是嵌套列表的形式,需要解嵌套
rdd2 = rdd.flatMap(lambda x: x.split(" "))
print(rdd2.collect())
# 输出结果:['apple', 'banana', 'orange', 'tomato', 'potato', 'wine', 'beer']
sc.stop()

reduceByKey算子

功能:针对KV型RDD,自动按照key分组,然后根据你提供的聚合逻辑,完成组内数据(value)的聚合操作。

语法:

rdd.reduceByKey(func)
# func:(V,V) -> V
# 接收2个传入参数(类型要一致),返回一个返回值,类型和传入要求一致。

KV型RDD指二元元组

reduceByKey中的聚合逻辑:

比如,有[1,2,3,4,5],聚合函数是:lambda a,b: a+b

聚合逻辑

示例:

# reduceByKey算子
from pyspark import SparkConf,SparkContext
import os
os.environ['PYSPARK_PYTHON'] = "C:/Users/Leon/AppData/Local/Programs/Python/Python310/python310.exe"
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")
sc = SparkContext(conf=conf)
rdd = sc.parallelize([('男',95), ('女',90), ('男',88), ('女',92)])
# 求男生和女生两个组的成绩之和
rdd2 = rdd.reduceByKey(lambda a,b: a+b)
print(rdd2.collect())
sc.stop()

运行结果:

[('男', 183), ('女', 182)]

综合案例1

前置:在当前目录下创建一个"words.txt",里面存放内容如下:

sheep tiger duck pig duck
pig pig tiger sheep sheep
tiger duck pig duck
sheep sheep pig tiger

需求:统计单词出现个数

实现:

# 综合案例1
from pyspark import SparkConf,SparkContext
import os
os.environ['PYSPARK_PYTHON'] = "C:/Users/Leon/AppData/Local/Programs/Python/Python310/python310.exe"
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")
sc = SparkContext(conf=conf)
# 读取数据文件
rdd = sc.textFile("words.txt")
# 取出全部单词
word_rdd = rdd.flatMap(lambda x: x.split(" "))
# 将所有单词都转换为二元元组,单词为key,value设置为1
word_with_one_rdd = word_rdd.map(lambda word: (word,1))
# 分组并求和
result_rdd = word_with_one_rdd.reduceByKey(lambda a,b: a+b)
print(result_rdd.collect())

运行结果:

[('sheep', 5), ('tiger', 4), ('duck', 4), ('pig', 5)]

filter算子

功能:对数据进行过滤

语法:

rdd.filter(func)
# func:(T) -> bool 传入1个随意类型的参数,返回值为True(被保留)或False(被丢弃)

示例:

# filter算子
from pyspark import SparkConf,SparkContext
import os
os.environ['PYSPARK_PYTHON'] = "C:/Users/Leon/AppData/Local/Programs/Python/Python310/python310.exe"
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")
sc = SparkContext(conf=conf)
rdd = sc.parallelize([1,2,3,4,5])
# 对数据进行过滤,保留偶数
rdd1 = rdd.filter(lambda num: num%2 == 0)
print(rdd1.collect())

运行结果:

[2, 4]

distinct算子

功能:对RDD数据进行去重,返回新RDD;直接调用,无需传参

示例:

# distinct算子
from pyspark import SparkConf,SparkContext
import os
os.environ['PYSPARK_PYTHON'] = "C:/Users/Leon/AppData/Local/Programs/Python/Python310/python310.exe"
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")
sc = SparkContext(conf=conf)
rdd = sc.parallelize([1,2,2,3,3,3,4,4,4,4])
# 对数据进行去重
rdd1 = rdd.distinct()
print(rdd1.collect())

运行结果:

[1, 2, 3, 4]

sortBy算子

功能:对RDD数据基于指定规则进行排序

语法:

rdd.sortBy(func, ascending=False, numPartitions=1)
'''
func:(T) -> U:告知按照rdd中的那个数据进行排序,比如
lambda x: x[1] 表示按照rdd中的第二列元素进行排序
ascending: True升序 False降序
numPartitions: 用多少分区排序(与分布式有关,目前设置为1即可)
'''

示例:

# sortBy算子
from pyspark import SparkConf,SparkContext
import os
os.environ['PYSPARK_PYTHON'] = "C:/Users/Leon/AppData/Local/Programs/Python/Python310/python310.exe"
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")
sc = SparkContext(conf=conf)
rdd = sc.parallelize([("C/C++","赵老师",13),("Java","孙老师",21),("Python","王老师",9)])
# 假设有这样一组数据,内容分别为语言科目、科任老师、选课人数,对数据按照选课人数降序排序
rdd1 = rdd.sortBy(lambda x: x[2], ascending=False, numPartitions=1)
print(rdd1.collect())

运行结果:

[('Java', '孙老师', 21), ('C/C++', '赵老师', 13), ('Python', '王老师', 9)]

综合案例2

本案例所需数据在开头下载

数据说明:内容为订单相关信息;格式为json,一行有多个json数据,用" | "分隔

需求:

  1. 各个城市的销售额排名(降序)
  2. 各个城市的售卖商品类别
  3. 北京市的售卖商品类别

实现:

# 综合案例2
from pyspark import SparkConf,SparkContext
import json
import os
os.environ['PYSPARK_PYTHON'] = "C:/Users/Leon/AppData/Local/Programs/Python/Python310/python310.exe"
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")
sc = SparkContext(conf=conf)
# TODO 需求1:各个城市的销售额排名(降序)
# 1.1 读取文件得到RDD
file_rdd = sc.textFile("orders.txt")
# 1.2 取出一个个JSON字符串
json_str_rdd = file_rdd.flatMap(lambda x: x.split("|"))
# 1.3 将JSON字符串转换为字典
dict_rdd = json_str_rdd.map(lambda x: json.loads(x))
#print(dict_rdd.collect())
# 1.4 取出城市和销售额数据
city_with_money_rdd = dict_rdd.map(lambda x: (x['areaName'], int(x['money'])))
# 1.5 按城市分组,按销售额聚合
city_result_rdd = city_with_money_rdd.reduceByKey(lambda a,b: a+b)
# 1.6 按销售额聚合结果进行排序
result1_rdd = city_result_rdd.sortBy(lambda x: x[1], ascending=False, numPartitions=1)
print("需求1的结果:",result1_rdd.collect())
# TODO 需求2:各个城市的售卖商品类别
# 取出全部商品类别并进行去重
category_rdd = dict_rdd.map(lambda x: x['category']).distinct()
print("需求2的结果:",category_rdd.collect())
# TODO 需求3:北京市的售卖商品类别
category_beijing_rdd = dict_rdd.filter(lambda x: x['areaName']=='北京').map(lambda x: x['category']).distinct()
print("需求3的结果:",category_beijing_rdd.collect())

运行结果:

需求1的结果: [('北京', 91556), ('杭州', 28831), ('天津', 12260), ('上海', 1513), ('郑州', 1120)]
需求2的结果: ['平板电脑', '家电', '书籍', '手机', '电脑', '家具', '食品', '服饰']
需求3的结果: ['平板电脑', '家电', '书籍', '手机', '电脑', '家具', '食品', '服饰']

数据输出

collect算子

  • 功能:将RDD各个分区的数据统一收集到Driver中,形成一个List对象
  • 用法:rdd.collect()
  • 返回值是一个list

前面一直在用,不再赘述

reduce算子

功能:对RDD数据集按照传入的逻辑进行聚合

语法:

rdd.reduce(func)
# func: (T,T) -> T
类比reduceByKey
返回计算结果

示例:

# reduce算子
from pyspark import SparkConf,SparkContext
import os
os.environ['PYSPARK_PYTHON'] = "C:/Users/Leon/AppData/Local/Programs/Python/Python310/python310.exe"
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")
sc = SparkContext(conf=conf)
rdd = sc.parallelize([1,2,3,4,5])
result = rdd.reduce(lambda a,b: a+b)
print(result)# 15

take算子

功能:取RDD的前N个元素,组合成list返回

示例:

# take算子
from pyspark import SparkConf,SparkContext
import os
os.environ['PYSPARK_PYTHON'] = "C:/Users/Leon/AppData/Local/Programs/Python/Python310/python310.exe"
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")
sc = SparkContext(conf=conf)
rdd = sc.parallelize([1,2,3,4,5])
take_list = rdd.take(3)
print(take_list)

运行结果:

[1, 2, 3]

count算子

功能:计算RDD数据的数目并返回这个数值

示例:

# count算子
from pyspark import SparkConf,SparkContext
import os
os.environ['PYSPARK_PYTHON'] = "C:/Users/Leon/AppData/Local/Programs/Python/Python310/python310.exe"
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")
sc = SparkContext(conf=conf)
rdd = sc.parallelize([1,2,3,4,5])
count = rdd.count()
print(count)# 5

saveAsTextFile算子

功能:将RDD的数据写入文本文件中

支持本地写出,hdfs等文件系统

需要先进行相关配置

本文开头提供配置下载,内附说明

示例:

# saveAsTextFile算子
from pyspark import SparkConf,SparkContext
import os
os.environ['PYSPARK_PYTHON'] = "C:/Users/Leon/AppData/Local/Programs/Python/Python310/python310.exe"
os.environ['HADOOP_HOME'] = "C:/00_Root-tools/hadoop-3.0.0"
# hadoop安装路径
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")
conf.set("spark.default.parallelism","1") # 设置全局并行度为1
sc = SparkContext(conf=conf)
rdd1 = sc.parallelize([1,2,3,4,5])
rdd2 = sc.parallelize([("Hello",3), ("Spark",5), ("Hi",7)])
rdd3 = sc.parallelize([[1,3,5], [6,7,9], [11,13,11]])
# 输出到文件中,设置路径
rdd1.saveAsTextFile("E:/output1")
rdd2.saveAsTextFile("E:/output2")
rdd3.saveAsTextFile("E:/output3")

修改rdd分区为1个

方式1:SparkConf对象设置属性全局并行度为1

conf.set("spark.default.parallelism","1") # 设置全局并行度为1

方式2:创建RDD的时候设置(parallelize方法传入numSlices参数为1)

rdd1 = sc.parallelize([1,2,3,4,5], numSlices=1)#或
rdd1 = sc.parallelize([1,2,3,4,5], 1)

综合案例3

数据:search_log.txt

在本文开头提供下载

需求:读取文件转换成RDD,并完成:

  1. 打印输出:热门搜索时间段(小时精度)Top3
  2. 打印输出:热门搜索词Top3
  3. 打印输出:统计"黑马程序员"关键字在哪个时段被搜索最多
  4. 将数据转换为JSON格式,写出为文件

示例:

# 综合案例3
from pyspark import SparkConf,SparkContext
import os
os.environ['PYSPARK_PYTHON'] = "C:/Users/Leon/AppData/Local/Programs/Python/Python310/python310.exe"
os.environ['HADOOP_HOME'] = "C:/00_Root-tools/hadoop-3.0.0"
# hadoop安装路径
conf = SparkConf().setMaster("local[*]").setAppName("test_spark_app")
conf.set("spark.default.parallelism","1") # 设置全局并行度为1
sc = SparkContext(conf=conf)
# 读取文件转换成RDD
file_rdd = sc.textFile("search_log.txt")
# TODO 需求1:打印输出:热门搜索时间段(小时精度)Top3
'''
1.1 取出全部的时间并转换为小时
1.2 转换为(小时,1)的二元元组
1.3 Key分组聚合Value
1.4 排序(降序)
1.5 取前三
'''
# 链式调用
'''
file_rdd.map(lambda x: x.split("\t"))\.map(lambda  x: x[0][:2])\.map(lambda x: (x,1))\
3个map可以写成1个
'''
result1 = \
file_rdd.map(lambda x: (x.split("\t")[0][:2],1))\.reduceByKey(lambda a,b: a+b)\.sortBy(lambda x: x[1],ascending=False,numPartitions=1)\.take(3)
print("需求1的结果:",result1)
# TODO 需求2:打印输出:热门搜索词Top3
'''
2.1 取出全部的搜索词
2.2 (词,1) 二元元组
2.3 分组聚合
2.4 排序
2.5 取前三
'''
result2 = \
file_rdd.map(lambda x: (x.split("\t")[2],1))\.reduceByKey(lambda a,b: a+b)\.sortBy(lambda x: x[1],ascending=False,numPartitions=1)\.take(3)
print("需求2的结果:",result2)
# TODO 需求3:打印输出:统计"黑马程序员"关键字在哪个时段被搜索最多
'''
3.1 过滤内容,只保留"黑马程序员"关键字
3.2 转换为(小时,1)的二元元组
3.3 分组聚合
3.4 排序
3.5 取前1
'''
result3 = \
file_rdd.map(lambda x: x.split("\t"))\.filter(lambda x: x[2]=="黑马程序员")\.map(lambda x: (x[0][:2],1))\.reduceByKey(lambda a,b: a+b)\.sortBy(lambda x: x[1],ascending=False,numPartitions=1)\.take(1)
print("需求3的结果:",result3)
# TODO 需求4:将数据转换为JSON格式,写出为文件
# 转换为JSON格式的RDD并写出为文件
file_rdd.map(lambda x: x.split("\t"))\.map(lambda x: {"time": x[0], "user_id":x[1], "key_word":x[2], "rank1":x[3], "rank2":x[4], "url":x[5]})\.saveAsTextFile("E:/output_json")

输出结果:

需求1的结果: [('20', 3479), ('23', 3087), ('21', 2989)]
需求2的结果: [('scala', 2310), ('hadoop', 2268), ('博学谷', 2002)]
需求3的结果: [('22', 245)]
//生成文件夹

PySpark代码是可以在大数据集群上运行的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/13223.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

5万字带你一文看懂自动驾驶之高精度地图前世今生

在讲解高精度地图之前,我们先把定位这个事情弄清楚,想明白,后面的事情就会清晰很多,自古哲学里面讨论的人生终极问题,无非就三个,我是谁,我从哪里来,我要去哪里,这里的位…

构建智慧设施管理平台:数字化引领未来建筑行业发展

随着城市化进程的不断推进和建筑行业的持续发展,智慧设施管理平台的重要性日益凸显。在这一背景下,构建智慧设施管理平台成为推动建筑行业数字化转型的关键举措。本文将深入探讨智慧设施管理平台的构建与优势,助力建筑企业把握数字化转型的主…

【从零开始学架构 架构基础】二 架构设计的复杂度来源:高性能复杂度来源

架构设计的复杂度来源其实就是架构设计要解决的问题,主要有如下几个:高性能、高可用、可扩展、低成本、安全、规模。复杂度的关键,就是新旧技术之间不是完全的替代关系,有交叉,有各自的特点,所以才需要具体…

openEuler 22.03安装单机版oracle 19c(附录所有patch包)

客户要在OpenEuler 22.0.3 LTS上安装的19.3.0.0 ,在安装到11%的时候报错all_no_orcl错误,我们知道欧拉底层是rhel9,这些错误其实经常接触都知道肯定是各种软件包的版本不对导致的,但是各种依赖太多了也不好解决,最后在官网有所发现: Requirements for Installing Oracle Datab…

【文末附gpt升级方案】探讨当前时机是否适合进入AIGC行业(一)

随着科技的飞速发展,人工智能生成内容(AIGC)作为新兴的技术领域,正逐步走进公众的视野,并在多个行业展现出巨大的应用潜力。然而,对于创业者、投资者以及希望进入这一领域的专业人士来说,当前时…

2024新零售行业多元化用工报告

来源:君润人力 近期历史回顾:

小米15曝光?可能会要稍微涨价

也许是感受到了智能机市场的逐渐复苏,最近各大手机品牌发售新品的速度明显加快了。从4月份的Redmi、一加,再到5月份一大堆vivo、OPPO新机型的发布。而近日,有关小米14即将发售的消息也是悄咪咪的放了出来。 去年发售的小米14可以说是狠狠地让…

202012青少年软件编程(Python)等级考试试卷(三级)

第 1 题 【单选题】 在Python正则表达式中,用来匹配任意空白字符的是( )。 A 😒 B :S C :d D 😄 正确答案:A 试题解析: 第 2 题 【单选题】 在Python正则表达式中,用来匹配任意非数字字符的是&…

双向RNN和双向LSTM

双向RNN和双向LSTM 一、双向循环神经网络BiRNN 1、为什么要用BiRNN 双向RNN,即可以从过去的时间点获取记忆,又可以从未来的时间点获取信息,也就是说具有以下两个特点: 捕捉前后文信息:传统的单向 RNN 只能利用先前的上下文信息…

vue3+ts(<script setup lang=“ts“>)刷新页面后保持下拉框选中效果

效果图&#xff1a; 代码&#xff1a; <template><div class"app-layout"><div class"app-box"><div class"header"><div class"header-left"></div><div class"title">室外智…

scratch列表排序 2024年3月中国电子学会图形化编程 少儿编程 scratch编程等级考试四级真题和答案解析

目录 scratch列表排序 一、题目要求 1、准备工作 2、功能实现 二、案例分析 1、角色分析 2、背景分析 3、前期准备 三、解题思路 1、思路分析 2、详细过程 四、程序编写 五、考点分析 六、推荐资料 1、入门基础 2、蓝桥杯比赛 3、考级资料 4、视频课程 5、p…

Python函数之旅专栏(导航)

Python内置函数(参考版本:3.11.8)AELRabs( )enumerate( )len( )range( )aiter( )eval( )list( )repr( )all( )exec( )locals( )reversed( )anext( )round( )any( ) ascii( )FM  filter( )map( )S float( )max( )set( )Bformat( )memoryview( )setattr( )bin( )frozenset( )…

ArcGI基本技巧-科研常用OLS, GWR, GTWR模型实现

ArcGI基本技巧-科研常用OLS, GWR, GTWR模型实现 OLS,GWR,GTWR回归模型均可以揭示解释变量对被解释变量的影响且可以进行预测。Ordinary Least Squares (OLS)是最小二乘法&#xff0c;Geographically Weighted Regression (GWR)是地理加权回归&#xff0c;Geographically and T…

Unity射击游戏开发教程:(18)添加弹药计数+补充弹药

添加简单的弹药计数 我将讨论如何向游戏中添加简单的弹药计数。这将包括在 HUD 中添加弹药计数器,当弹药达到 0 时,文本会将颜色更改为红色以提醒玩家。另外,当弹药数为0时,玩家将无法再射击。让我们深入了解吧! 在播放器脚本中我们需要添加一些变量。我们将创建两个公共整…

详细分析Python中的win32com(附Demo)

目录 前言1. 基本知识2. Excel3. Word 前言 对于自动化RPA比较火热&#xff0c;相应的库也比较多&#xff0c;此文分析win32com这个库&#xff0c;用于操作office 1. 基本知识 Win32com 是一个 Python 模块&#xff0c;是 pywin32 扩展的一部分&#xff0c;允许 Python 代码…

C语言如何删除表中指定位置的结点?

一、问题 如何删除链表中指定位置的结点&#xff1f; 二、解答 删除链表中指定的结点&#xff0c;就像是排好队的⼩朋友⼿牵着⼿&#xff0c;将其中⼀个⼩朋友从队伍中分出来&#xff0c;只需将这个⼩朋友的双⼿从两边松开。 删除结点有两种情况&#xff1a; &#xff08;1&am…

HTML静态网页成品作业(HTML+CSS)——我的家乡江永网页设计制作(1个页面)

&#x1f389;不定期分享源码&#xff0c;关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 &#x1f3f7;️本套采用HTMLCSS&#xff0c;未使用Javacsript代码&#xff0c;共有1个页面。 二、作品演示 三、代…

Pencils Protocol Season 2 收官在即,Season 3 携系列重磅权益来袭

此前Scroll生态LaunchPad &聚合收益平台Pencils Protocol&#xff08;原Penpad&#xff09;&#xff0c;推出了首个资产即其生态代币PDD的Launch&#xff0c;Season 2活动主要是用户通过质押ETH代币、组件战队等方式&#xff0c;来获得Point奖励&#xff0c;并以该Point为依…

2024 Google I/O大会:全方位解读最新AI技术和产品

引言&#xff1a; 2024年的Google I/O大会如期举行&#xff0c;作为技术圈的年度盛事之一&#xff0c;谷歌展示了其在人工智能领域的最新进展。本次大会尤其引人注目&#xff0c;因为它紧随着OpenAI昨天发布GPT-4o的脚步。让我们详细解析Google此次公布的各项新技术和产品&…

svn如何远程访问?

svn&#xff08;Subversion&#xff09;是一种版本控制系统&#xff0c;广泛应用于软件开发领域。它能够追踪文件和目录的变化&#xff0c;记录每个版本的修改内容&#xff0c;并允许多人协同开发。svn的远程访问功能允许开发人员可以在不同的地点访问和管理代码&#xff0c;提…