数学建模——农村公交与异构无人机协同配送优化

目录

1.题目

2.问题1

1. 问题建模

输入数据

​编辑

 2. 算法选择

3.数据导入 

3.模型构建

1. 距离计算

2. 优化模型

具体步骤

进一步优化

1. 重新定义问题

2. 变量定义

3. 优化目标

具体步骤

再进一步优化

具体实现步骤

1. 计算距离矩阵

2. 变量定义

3. 约束条件

4. 优化目标

以下是优化模型的具体实现:

1.确保所有约束和目标函数都得到正确实现。

2. 可视化飞行路径和时间表

最终实现结果


1.题目

A题 农村公交与异构无人机协同配送优化

农村地区因其复杂多变的地形、稀疏的道路网络以及分散的配送点,传统配送方式效率低下,成本高昂,难以满足日益增长的配送需求。随着无人机技术迅猛发展和在物流领域的广泛应用,一种全新的配送模式应运而生——农村公交与异构无人机协同配送模式。

农村公交作为地面交通系统的重要组成部分,其覆盖范围广、定时定点运行且成本相对较低,为无人机提供了理想的地面支撑。通过将无人机与农村公交相结合,可以充分利用两者的优势,实现高效协同配送。具体而言,农村公交负责将无人机和货物运送至各个公交站点,这些站点既是无人机的起降点,也是货物的转运中心。无人机则利用自身的空中优势,从公交站点起飞,快速准确地完成到具体配送点的配送任务。

为提升配送效率和灵活性,异构无人机的使用显得尤为重要。异构无人机具有不同的飞行特性、载荷能力和速度,能够根据不同配送需求进行灵活的任务分配。通过合理搭配和调度不同类型的异构无人机,可以实现对复杂多变配送需求的精准应对,提高整体配送效率。

实施同时取送货服务也更能体现农村物流的独特需求。在一次飞行中,无人机能够兼顾多个配送点的送货与取货任务,从而显著提升配送效率,减少周转时间。通过精心策划飞行路径和合理分配任务,能够有效减少无人机的使用次数和飞行频率。

农村公交装载货物和无人机,从配送中心出发,按公交固定路线及公交站点行驶。根据客户需求和无人机性能,精准分配无人机类型及配送任务。无人机在接近客户点的公交站点起飞,按优化路径执行取送货任务,确保高效完成。完成任务后,无人机返回最近站点,搭乘下一次经过该站点的公交进行迅速换电后继续服务该站点附近客户需求点或搭载公交到达其他站点服务其周围需求点,无人机没有任务后搭载公交回到配送中心。整个过程中,无人机与农村公交紧密协作,循环执行配送任务,直至所有任务完成。通过这种模式,能够充分利用地面和空中的优势,提高配送效率,降低成本,满足农村地区日益增长的配送需求。

假设无人机可以在公交站点等待下一班次的公交车,若公交站点处有返回的无人机需要装货,公交车在该站点逗留5分钟时间用于更换无人机电池(不需要充电)及装载货物。无人机产生的费用包括两部分,一是固定费用,只要使用就会产生,与无人机类型有关,二是运输费用,取决于无人机类型及运输过程的飞行里程(从站点起飞至回到站点的飞行里程)。此外,需求点的任务不能拆分,一辆公交车最多可携带两架无人机,每天任务完成后无人机必须回到起始站,不考虑客户点的时间窗,不考虑道路的随机性堵车,公交车的行驶速度为35公里/小时。

请根据附件所给数据解决以下几个问题:

问题1 只考虑使用A类无人机,请给出公交与无人机协同配送方案,使总费用最小;要求给出具体的飞行路径及时刻表。

问题2 三种类型无人机均可使用时,请给出最小费用的协同配送方案。

问题3 在问题2的基础上,如果每个需求点有取货的需求,且取货能获得一定的收入(每公斤0.5元),请给出最佳配送方案。

2.问题1

只考虑使用A类无人机,请给出公交与无人机协同配送方案,使总费用最小;要求给出具体的飞行路径及时刻表

1. 问题建模

输入数据
  • 公交站点数据:包括站点的位置和之间的距离。
  • 需求点数据:包括需求点的位置和配送需求。
  • A类无人机性能参数:包括最大飞行距离、载重能力、固定费用和飞行费用。
  • 公交发车时间表:公交车的出发和到达时间。

 2. 算法选择

3.数据导入 

# 公交站点数据
stations_data = pd.DataFrame({'Station_ID': [1, 2, 3, 4, 5, 6, 7, 8, 9],'Longitude': [110.125713, 110.08442, 110.029866, 109.962839, 109.956003, 109.920425, 109.839046, 109.823329, 109.767127],'Latitude': [32.815024, 32.771676, 32.748994, 32.743622, 32.812194, 32.856136, 32.860495, 32.847468, 32.807855]
})# 需求点数据
demands_data = pd.DataFrame({'Demand_ID': range(1, 51),'Longitude': [110.1053385, 110.1147032, 110.0862574, 110.0435344, 110.0575508,110.0386243, 110.0115086, 110.0390602, 110.0246454, 110.0575847,109.9456331, 109.9612274, 109.94592, 109.9316682, 109.9245376,109.7087533, 109.7748005, 109.7475891, 109.7534532, 109.783015,109.7410728, 109.7554844, 109.7147417, 109.8807093, 109.8070677,109.9054481, 109.8954509, 109.8979229, 109.8942179, 109.8610985,109.8744682, 109.8338804, 109.870924, 109.8292467, 109.8711312,109.8813363, 109.978788, 109.8166563, 109.8151216, 109.885638,109.9890984, 109.9647812, 109.9303732, 109.9401099, 109.944496,109.979708, 109.976757, 109.94999, 109.973673, 109.967765],'Latitude': [32.77881526, 32.75599834, 32.74905239, 32.74275416, 32.76712584,32.70855831, 32.72619993, 32.73965997, 32.72360718, 32.76553658,32.7526657, 32.72286471, 32.70899877, 32.73848444, 32.70740885,32.7815564, 32.80016336, 32.80903496, 32.85129032, 32.82296929,32.82914197, 32.80581363, 32.79995734, 32.89696579, 32.79622985,32.89437141, 32.86724756, 32.83444574, 32.83224374, 32.90687042,32.89939698, 32.85616627, 32.848223, 32.83825122, 32.88979101,32.8642824, 32.75943454, 32.8096699, 32.82822489, 32.84032485,32.80854774, 32.80993619, 32.78956582, 32.85264625, 32.802178,32.817449, 32.811064, 32.795207, 32.746858, 32.820998],'Demand_kg': [3, 4, 2, 0, 8, 7, 4, 9, 10, 6, 7, 12, 3, 5, 6, 5, 3, 13, 12, 3,14, 10, 4, 34, 6, 6, 3, 4, 20, 5, 6, 5, 3, 15, 2, 6, 3, 4, 3, 2,6, 5, 9, 3, 3, 4, 6, 4, 4, 0]
})
# 无人机参数
D_max = 27  # 最大飞行距离
Q_max = 9   # 最大载重
C_fixed = 80  # 固定费用
C_per_km = 0.8  # 每公里费用
wait_time = 5 / 60  # 等待时间(小时)
battery_swap_time = 5 / 60  # 电池更换时间(小时)# 公交车参数
bus_speed = 35  # 公交车速度(km/h)
bus_schedule = {'白河至仓上': [6.67, 8.5, 9, 11, 14, 16.5],'仓上至白河': [6, 7.33, 8.83, 11, 14, 15.83]
}

3.模型构建

import pandas as pd # 公交站点数据 stations_data = pd.DataFrame({ 'Station_ID': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'Longitude': [110.125713, 110.08442, 110.029866, 109.962839, 109.956003, 109.920425, 109.839046, 109.823329, 109.767127], 'Latitude': [32.815024, 32.771676, 32.748994, 32.743622, 32.812194, 32.856136, 32.860495, 32.847468, 32.807855] }) # 需求点数据 demands_data = pd.DataFrame({ 'Demand_ID': range(1, 51), 'Longitude': [ 110.1053385, 110.1147032, 110.0862574, 110.0435344, 110.0575508, 110.0386243, 110.0115086, 110.0390602, 110.0246454, 110.0575847, 109.9456331, 109.9612274, 109.94592, 109.9316682, 109.9245376, 109.7087533, 109.7748005, 109.7475891, 109.7534532, 109.783015, 109.7410728, 109.7554844, 109.7147417, 109.8807093, 109.8070677, 109.9054481, 109.8954509, 109.8979229, 109.8942179, 109.8610985, 109.8744682, 109.8338804, 109.870924, 109.8292467, 109.8711312, 109.8813363, 109.978788, 109.8166563, 109.8151216, 109.885638, 109.9890984, 109.9647812, 109.9303732, 109.9401099, 109.944496, 109.979708, 109.976757, 109.94999, 109.973673, 109.967765 ], 'Latitude': [ 32.77881526, 32.75599834, 32.74905239, 32.74275416, 32.76712584, 32.70855831, 32.72619993, 32.73965997, 32.72360718, 32.76553658, 32.7526657, 32.72286471, 32.70899877, 32.73848444, 32.70740885, 32.7815564, 32.80016336, 32.80903496, 32.85129032, 32.82296929, 32.82914197, 32.80581363, 32.79995734, 32.89696579, 32.79622985, 32.89437141, 32.86724756, 32.83444574, 32.83224374, 32.90687042, 32.89939698, 32.85616627, 32.848223, 32.83825122, 32.88979101, 32.8642824, 32.75943454, 32.8096699, 32.82822489, 32.84032485, 32.80854774, 32.80993619, 32.78956582, 32.85264625, 32.802178, 32.817449, 32.811064, 32.795207, 32.746858, 32.820998 ], 'Demand_kg': [3, 4, 2, 0, 8, 7, 4, 9, 10, 6, 7, 12, 3, 5, 6, 5, 3, 13, 12, 3, 14, 10, 4, 34, 6, 6, 3, 4, 20, 5, 6, 5, 3, 15, 2, 6, 3, 4, 3, 2, 6, 5, 9, 3, 3, 4, 6, 4, 4, 0] }) stations_data.head(), demands_data.head()

结果

(   Station_ID   Longitude   Latitude0           1  110.125713  32.8150241           2  110.084420  32.7716762           3  110.029866  32.7489943           4  109.962839  32.7436224           5  109.956003  32.812194,Demand_ID   Longitude   Latitude  Demand_kg0          1  110.105339  32.778815          31          2  110.114703  32.755998          42          3  110.086257  32.749052          23          4  110.043534  32.742754          04          5  110.057551  32.767126          8)

我们已经加载了公交站点和需求点的数据。接下来,我们将根据这些数据计算各个站点与需求点之间的距离,并建立一个优化模型,来求解最优的公交与A类无人机协同配送方案。

1. 距离计算

首先,我们需要计算每个站点与每个需求点之间的距离。

2. 优化模型

我们将使用整数线性规划(ILP)来求解该问题。目标是最小化总费用,包括固定费用和飞行费用。

具体步骤

  1. 计算距离矩阵。
  2. 建立优化模型。
  3. 求解模型,得到最优路径和时间表。

进一步优化

  1. 考虑无人机的等待时间和电池更换时间:由于无人机在站点可能需要等待公交车或进行电池更换,这些时间也需要纳入优化模型中。

  2. 考虑公交车的发车时间表:优化模型需要结合公交车的发车时间,以确保无人机能够在合理的时间内完成任务。

  3. 考虑多架无人机协同工作:每辆公交车最多可以携带两架无人机,需要确保这些无人机的任务分配合理。

下面是一个更为详细和优化的实现步骤:

1. 重新定义问题

重新定义问题以考虑等待时间、电池更换时间和公交车发车时间表。

2. 变量定义

3. 优化目标

最小化总费用,包括固定费用、飞行费用、等待时间和电池更换时间。

具体步骤

  1. 计算距离矩阵。
  2. 建立优化模型。
  3. 求解模型,得到最优路径和时间表。

下面是具体的实现:

import numpy as np
from geopy.distance import geodesic
import pulp# 计算距离矩阵
num_stations = stations_data.shape[0]
num_demands = demands_data.shape[0]distances = np.zeros((num_stations, num_demands))
for i, station in stations_data.iterrows():for j, demand in demands_data.iterrows():distances[i, j] = geodesic((station['Latitude'], station['Longitude']), (demand['Latitude'], demand['Longitude'])).km# 无人机参数
D_max = 27  # 最大飞行距离
Q_max = 9   # 最大载重
C_fixed = 80  # 固定费用
C_per_km = 0.8  # 每公里费用
wait_time = 5 / 60  # 等待时间(小时)# 公交车参数
bus_speed = 35  # 公交车速度(km/h)
bus_schedule = {'白河至仓上': [6.67, 8.5, 9, 11, 14, 16.5],'仓上至白河': [6, 7.33, 8.83, 11, 14, 15.83]
}# 创建优化问题
prob = pulp.LpProblem("Minimize_Cost", pulp.LpMinimize)# 定义决策变量
x = pulp.LpVariable.dicts("x", (range(num_stations), range(num_demands)), cat='Binary')
t = pulp.LpVariable.dicts("t", (range(num_stations), range(num_demands)), lowBound=0)# 目标函数
prob += pulp.lpSum(x[i][j] * (C_fixed + distances[i, j] * C_per_km + wait_time * bus_speed) for i in range(num_stations) for j in range(num_demands))# 约束条件
for j in range(num_demands):prob += pulp.lpSum(x[i][j] for i in range(num_stations)) == 1  # 每个需求点只能被一个无人机配送for i in range(num_stations):for j in range(num_demands):prob += distances[i, j] * x[i][j] <= D_max  # 无人机飞行距离限制prob += demands_data.loc[j, 'Demand_kg'] * x[i][j] <= Q_max  # 无人机载重限制# 公交车行程约束
for schedule in bus_schedule.values():for i in range(1, len(schedule)):prob += (schedule[i] - schedule[i-1]) * bus_speed >= 0# 求解问题
prob.solve()# 解析结果
optimal_routes = []
for i in range(num_stations):for j in range(num_demands):if pulp.value(x[i][j]) == 1:optimal_routes.append((i+1, j+1, distances[i, j]))optimal_routes

再进一步优化

  1. 公交车发车时间和到达时间:确保无人机任务的起始时间和完成时间与公交车的时间表一致。
  2. 电池更换和装载时间:将无人机电池更换和装载货物的时间纳入模型。
  3. 多架无人机的任务分配:合理分配多架无人机的任务,确保每辆公交车最多携带两架无人机。

具体实现步骤

1. 计算距离矩阵

首先计算每个站点与每个需求点之间的距离。

2. 变量定义

3. 约束条件

  • 每个需求点只能被一个无人机配送。
  • 无人机的最大飞行距离限制。
  • 无人机的载重能力限制。
  • 公交车的发车和到达时间。

4. 优化目标

最小化总费用,包括固定费用、飞行费用、等待时间和电池更换时间。

以下是优化模型的具体实现:

首先,我们重新定义和求解优化模型,

1.确保所有约束和目标函数都得到正确实现。

import numpy as np
from geopy.distance import geodesic
import pulp
import matplotlib.pyplot as plt# 计算距离矩阵
num_stations = stations_data.shape[0]
num_demands = demands_data.shape[0]distances = np.zeros((num_stations, num_demands))
for i, station in stations_data.iterrows():for j, demand in demands_data.iterrows():distances[i, j] = geodesic((station['Latitude'], station['Longitude']), (demand['Latitude'], demand['Longitude'])).km# 无人机参数
D_max = 27  # 最大飞行距离
Q_max = 9   # 最大载重
C_fixed = 80  # 固定费用
C_per_km = 0.8  # 每公里费用
wait_time = 5 / 60  # 等待时间(小时)
battery_swap_time = 5 / 60  # 电池更换时间(小时)# 公交车参数
bus_speed = 35  # 公交车速度(km/h)
bus_schedule = {'白河至仓上': [6.67, 8.5, 9, 11, 14, 16.5],'仓上至白河': [6, 7.33, 8.83, 11, 14, 15.83]
}# 创建优化问题
prob = pulp.LpProblem("Minimize_Cost", pulp.LpMinimize)# 定义决策变量
x = pulp.LpVariable.dicts("x", (range(num_stations), range(num_demands)), cat='Binary')
y = pulp.LpVariable.dicts("y", (range(num_stations), range(2)), cat='Binary')  # 每站最多两架无人机# 目标函数
prob += pulp.lpSum(x[i][j] * (C_fixed + distances[i, j] * C_per_km) + y[i][k] * (wait_time + battery_swap_time) * bus_speed for i in range(num_stations) for j in range(num_demands) for k in range(2))# 约束条件
for j in range(num_demands):prob += pulp.lpSum(x[i][j] for i in range(num_stations)) == 1  # 每个需求点只能被一个无人机配送for i in range(num_stations):for j in range(num_demands):prob += distances[i, j] * x[i][j] <= D_max  # 无人机飞行距离限制prob += demands_data.loc[j, 'Demand_kg'] * x[i][j] <= Q_max  # 无人机载重限制# 公交车发车和到达时间约束
for schedule in bus_schedule.values():for i in range(1, len(schedule)):prob += (schedule[i] - schedule[i-1]) * bus_speed >= 0# 每站最多两架无人机约束
for i in range(num_stations):prob += pulp.lpSum(y[i][k] for k in range(2)) <= 2# 求解问题
prob.solve()# 解析结果
optimal_routes = []
for i in range(num_stations):for j in range(num_demands):if pulp.value(x[i][j]) == 1:optimal_routes.append((i, j, distances[i, j]))optimal_routes

2. 可视化飞行路径和时间表

我们使用 Matplotlib 来绘制飞行路径和时间表。

# 可视化飞行路径
plt.figure(figsize=(10, 8))# 绘制公交站点
for i, station in stations_data.iterrows():plt.plot(station['Longitude'], station['Latitude'], 'bo', markersize=8)plt.text(station['Longitude'], station['Latitude'], f'S{i+1}', fontsize=12, ha='right')# 绘制需求点
for j, demand in demands_data.iterrows():plt.plot(demand['Longitude'], demand['Latitude'], 'ro', markersize=6)plt.text(demand['Longitude'], demand['Latitude'], f'D{demand["Demand_ID"]}', fontsize=10, ha='left')# 绘制最优路径
for route in optimal_routes:station_idx, demand_idx, dist = routestation = stations_data.iloc[station_idx]demand = demands_data.iloc[demand_idx]plt.plot([station['Longitude'], demand['Longitude']], [station['Latitude'], demand['Latitude']], 'k--')plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.title('Optimal Drone Delivery Routes')
plt.legend(['Bus Station', 'Demand Point'])
plt.grid()
plt.show()# 输出具体的时间表
schedule_output = []for route in optimal_routes:station_idx, demand_idx, dist = routestation = stations_data.iloc[station_idx]demand = demands_data.iloc[demand_idx]# 假设从公交站出发的时间为公交车到达时间for time in bus_schedule['白河至仓上']:arrival_time = time + dist / bus_speedschedule_output.append((f'Station {station_idx+1}', f'Demand {demand_idx+1}', time, arrival_time))schedule_output_df = pd.DataFrame(schedule_output, columns=['Station', 'Demand', 'Departure Time', 'Arrival Time'])
schedule_output_df

最终实现结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/13002.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql 查询---多表设计

部分数据 1distinct去重 select distinct job from tb_emp;select * from tb_emp where id in (1,2,3); select * from tb_emp where id between 1 and 5; select * from tb_emp where name like __; #下划线匹配单个字符, %匹配任意多个字符select min(entrydate) from tb_e…

为什么Python中会有集合set类型?

知乎上有人提问&#xff0c;为什么Python有了列表list、元组tuple、字典dict这样的容器后&#xff0c;还要弄个集合set&#xff1f; 确实set和list、tuple、dict一样&#xff0c;都是python的主要数据类型&#xff0c;它们的作用是不同的。 因为set是数学意义上的集合&#xf…

四、基于Stage模型的应用架构设计

前面我们了解了如何构建鸿蒙应用以及开发了第一个页面&#xff0c;这只是简单的demo&#xff1b;那么如何去设计&#xff0c;从0到1搭建一个真正的应用呢 一、基本概念 1、Stage模型基本概念 Stage模型概念图 AbilityStage&#xff1a;是一个Module级别的组件容器&#xff0…

Linux---编辑器vim的认识与简单配置

前言 我们在自己的电脑上所用的编译软件&#xff0c;就拿vs2022来说&#xff0c;我们可以在上面写C/C语言、python、甚至java也可以在上面进行编译&#xff0c;这种既可以用来编辑、运行编译&#xff0c;又可以支持很多种语言的编译器是一种集成式开发环境&#xff0c;集众多于…

海外住宅IP介绍

住宅IP&#xff0c;通俗的来讲就是分配给家庭的IP地址&#xff0c;ISP默认分配用户为家庭用户&#xff0c;其真实性与安全性都有一定保障。海外住宅IP是指由海外互联网服务提供商分配给家庭用户的IP地址&#xff0c;IP地址通常是静态的&#xff0c;稳定的&#xff0c;可以为用户…

vue3专栏项目 -- 四、前后端结合(上)

一、前后端分离是什么 前面我们一直在和静态数据打交道&#xff0c;虽然流程可以跑个半通&#xff0c;但是静态数据还是给我们造成了诸多不便&#xff0c;现在我们是时候用上后端了。 现在的应用开发模式&#xff0c;自从SPA出现以后&#xff0c;前端和后端可以平行的进行对应…

【动态规划五】回文串问题

目录 leetcode题目 一、回文子串 二、最长回文子串 三、分割回文串 IV 四、分割回文串 II 五、最长回文子序列 六、让字符串成为回文串的最少插入次数 leetcode题目 一、回文子串 647. 回文子串 - 力扣&#xff08;LeetCode&#xff09;https://leetcode.cn/problems/…

5.15_操作符详解

1、操作符分类&#xff1a; 算术操作符 - * / % 移位操作符 << >> 位操作符 & | ^ 赋值操作符 - ...... 单目操作符 关系操作符 逻辑操作符 条件操作符 逗号表达式 下标引用、函数调用和结构成员 2、算术操作符 - * / …

【Linux】系统登录,调用shell,shell配置文件,shell命令,特殊符号,shell快捷键,Linux运行级别,解决无限登录问题,修改提示符

目录 Linux系统的登录方式 以及 调用shell Linux shell 以及 shell配置文件 shell 命令 shell 特殊符号 shell 快捷键 Linux操作系统运行级别 单用户模式下解决无限登录问题 centos7修改命令行提示符 PS1 补充、centos7没有滚动条 Linux系统的登录方式 以及 调用shell…

vue3.0+antdv的admin管理系统vue-admin-beautiful推荐

前言 几年前&#xff0c;笔者自学了vue这一优秀的前端框架&#xff0c;但苦于没项目练手&#xff0c;无意间发现了vue-admin-beautiful这一优秀的前端集成框架。当时就使用它做了一很有意思的小项目---终端监控云平台&#xff0c;实现了前端和后台的整体功能。整体方案介绍参见…

查询新加 字段不返回数据要看 有没有 AllInfoResultMap 有要再里面加字段

查询新加 字段不返回数据要看 有没有 AllInfoResultMap 有要再里面加字段

HTTP客户端手动解析响应体数据

服务端 package mainimport ("easyGo/person""encoding/json""net/http" )func main() {http.HandleFunc("/test", func(w http.ResponseWriter, r *http.Request) {p : &person.Person{Name: "jackie",Age: 30,T: pe…

用友GRP-U8 userInfoWeb SQL注入致RCE漏洞复现 (XVE-2024-10539)

0x01 产品简介 用友GRP-U8R10行政事业内控管理软件是用友公司专注于国家电子政务事业,基于云计算技术所推出的新一代产品,是我国行政事业财务领域最专业的政府财务管理软件。 0x02 漏洞概述 用友GRP-U8R10行政事业内控管理软件 userInfoWeb接口处存在SQL注入漏洞,未授权的…

ADS使用记录之使用RFPro进行版图联合仿真-加入集总元器件

ADS使用记录之使用RFPro进行版图联合仿真-加入集总元器件 ADS使用记录之使用RFPro进行版图联合仿真中已经简单介绍了使用RFPro对版图就行仿真的方法。但是&#xff0c;如果版图中含有一些非微带的结构&#xff0c;比如说电感、电容、晶体管呢&#xff0c;在此举例解释一下。 …

NAT技术总结与双向NAT配置案例

NAT的转换方式&#xff1a; 1.静态转换&#xff1a;固定的一对一IP地址映射。 interface GigabitEthernet0/0/1 ip address 122.1.2.24 nat static global 122.1.2.1 inside 192.168.1.1 #在路由器出接口 公网地址 私网地址。 2.动态转换&#xff1a;Basic NAT nat address-gr…

有多少小于当前数字的数字

链接&#xff1a;https://leetcode.cn/problems/how-many-numbers-are-smaller-than-the-current-number/description/ 思路&#xff1a; 最简单的思路来说&#xff0c;就是双重for循环进行遍历&#xff0c;来判断个数&#xff0c; 优化思路&#xff0c;其中一个思路就是递推 …

C语言操作符详解(一)

算术操作符&#xff1a; 算术操作符有&#xff1a;加法 减法- 乘法* 除法/ 取余% 算术操作符该注意的点&#xff1a; 1.除了%操作符之外&#xff0c;其他的操作符都可以作用于整数和浮点数。 2.对于/操作符来说&#xff0c;两个数都是整数的话&#xff0c;结果只能是…

多区域OSPF路由配置

一、基础配置 1.搭建实验拓扑图 2.实验编址 具体如何配置可以看这一篇详细的博文&#xff1a;单区域OSPF实验-CSDN博客 3.分别检查六个路由器的配置&#xff1a; 使用命令display ip interface brief R1的配置 其他大家可以调出来&#xff0c;再与实验拓扑图进行比对&#…

上班族兼职新篇章:10大实战攻略,轻松年赚1-20万

对于众多上班族而言&#xff0c;如何在工作之余赚取额外收入&#xff0c;开启自己的第一份副业&#xff0c;已成为许多人心中的疑问。每个人的才能和兴趣点不尽相同&#xff0c;但都有机会找到适合自己的兼职方式。接下来&#xff0c;就让我们一起探索这10大实战攻略&#xff0…

景源畅信电商:做抖音有哪些未开发的蓝海领域?

在互联网信息爆炸的今天&#xff0c;抖音已经成为人们获取信息和娱乐的重要渠道。然而&#xff0c;随着用户数量的增加和内容的丰富&#xff0c;抖音的红海竞争也日益激烈。在这样的背景下&#xff0c;寻找还未被充分开发的蓝海领域&#xff0c;对于内容创作者来说&#xff0c;…