输电线路运行特性及简单电力系统潮流估算(二)

本篇为本科课程《电力系统稳态分析》的笔记。

本篇为这一章的第二篇笔记。上一篇传送门,下一篇传送门。

输电线路的运行特性

输电线路的空载运行特性

线路的等值电路如图所示。

在这里插入图片描述

由于是空载,则 S ~ 2 = 0 \widetilde{S}_2=0 S 2=0,可以计算出:
Δ S ~ Y 2 = U 2 2 ( − j B 2 ) = − j U 2 2 B 2 S ~ 2 ′ = S ~ 2 + Δ S ~ Y 2 = − j U 2 2 B 2 = P 2 ′ + j Q 2 ′ \Delta \widetilde{S}_{Y2}=U_2^2\left(-j\frac{B}{2}\right)=-j\frac{U_2^2B}{2}\\\\ \widetilde{S}_2'=\widetilde{S}_2+\Delta \widetilde{S}_{Y2}=-j\frac{U_2^2B}{2}=P_2'+jQ_2'\\\\ ΔS Y2=U22(j2B)=j2U22BS 2=S 2+ΔS Y2=j2U22B=P2+jQ2

则得到的 P 2 ′ = 0 , Q 2 ′ = − U 2 2 B 2 P_2'=0,Q_2'=-\frac{U_2^2B}{2} P2=0,Q2=2U22B

忽略线路的R和G,即为无损耗线路,则:
U ˙ 1 = U ˙ 2 + d U 2 = U ˙ 2 + Q 2 ′ X U 2 = U 2 − X B 2 U 2 \dot{U}_1=\dot{U}_2+\mathrm{d}U_2=\dot{U}_2+\frac{Q_2'X}{U_2}=U_2-\frac{XB}{2}U_2 U˙1=U˙2+dU2=U˙2+U2Q2X=U22XBU2

由于线路的B是大于零的,所以可以得出结论 U 1 < U 2 U_1<U_2 U1<U2,说明空载的情况下,线路末端的电压会高于线路始端的电压,这就叫做输电线路空载的末端电压升高现象,即末端翘尾现象。

已知线路的单位阻抗 x 0 = 0.1445 lg ⁡ D m r x_0=0.1445\lg\frac{D_m}{r} x0=0.1445lgrDm和导纳 b 0 = 7.58 × 1 0 − 6 1 lg ⁡ D m r b_0=7.58\times10^{-6}\frac{1}{\lg\frac{D_m}{r}} b0=7.58×106lgrDm1,所以得到首末两端的电压差为: Δ U = − x 0 b 0 2 l 2 U 2 = − K l 2 U 2 \Delta U=-\frac{x_0b_0}{2}l^2U_2=-Kl^2U_2 ΔU=2x0b0l2U2=Kl2U2

其中,l是线路的长度,K是一个可以算得的数,可见线路越长,电压差就越大,且电压差和长度的平方成正比。

如果线路更长,就需要用到以前推导过得方程,即已知末端电压和末端电流,求首端电压和首端电流:
U ˙ 1 = U ˙ 2 cosh ⁡ Γ l + I ˙ 2 Z c sinh ⁡ Γ l \dot{U}_1=\dot{U}_2\cosh\Gamma l+\dot{I}_2Z_c\sinh\Gamma l U˙1=U˙2coshΓl+I˙2ZcsinhΓl

由于末端空载,也就是电流为零,则关系式化为:
U ˙ 1 = U ˙ 2 cosh ⁡ Γ l \dot{U}_1=\dot{U}_2\cosh\Gamma l U˙1=U˙2coshΓl

在忽略R和G的情况下,即无损 α = 0 \alpha=0 α=0,有 Γ = z 0 y 0 = j x 0 j b 0 = j x 0 b 0 = j β \Gamma=\sqrt{z_0y_0}=\sqrt{jx_0jb_0}=j\sqrt{x_0b_0}=j\beta Γ=z0y0 =jx0jb0 =jx0b0 =jβ,上式化为:
U 1 = U 2 cosh ⁡ j β l = U 2 cos ⁡ β l U_1=U_2\cosh j\beta l=U_2\cos \beta l U1=U2coshjβl=U2cosβl

上式就是空载电压和线路长度的关系。计算情况下,当 β l = π 2 \beta l=\frac{\pi}{2} βl=2π时, U 1 = 0 U_1=0 U1=0,这说明即便是首端电压 U 1 = 0 U_1=0 U1=0,也可以让末端得到给定的电压 U 2 U_2 U2。这就是相当于发生了谐振,其线路长度约为波长的四分之一。

输电线路在轻载的情况

线路等值电路如图所示。轻载意味着有负载,但是功率很低,假设末端功率 S ~ 2 = P + j Q \widetilde{S}_2=P+jQ S 2=P+jQ

在这里插入图片描述

首端电压 U 1 U_1 U1和末端电压 U 2 U_2 U2的数值关系式计算不发生变化:
U 1 = ( 1 − X B 2 ) U 2 ⇒ U 2 = U 1 1 − X B 2 U_1=\left(1-\frac{XB}{2}\right)U_2\\\\ \Rightarrow U_2=\frac{U_1}{1-\frac{XB}{2}} U1=(12XB)U2U2=12XBU1

可以计算出 S ~ 2 ′ = S ~ B + S ~ 2 \widetilde{S}_2'=\widetilde{S}_B+\widetilde{S}_2 S 2=S B+S 2,即:
P ′ = P Q ′ = − U 2 2 B + Q P'=P\\\\ Q'=-U_2^2B+Q P=PQ=U22B+Q

可得:
d U ˙ 2 = Q ′ X U 2 + j P ′ X U 2 = − U 2 2 B + Q U 2 + j P X U 2 \mathrm{d}\dot{U}_2=\frac{Q'X}{U_2}+j\frac{P'X}{U_2}=\frac{-U_2^2B+Q}{U_2}+j\frac{PX}{U_2} dU˙2=U2QX+jU2PX=U2U22B+Q+jU2PX

因为有关系 U ˙ 1 = U ˙ 2 + d U ˙ 2 \dot{U}_1=\dot{U}_2+\mathrm{d}\dot{U}_2 U˙1=U˙2+dU˙2,所以可以画出如下图的向量示意图。

得到结论: U 1 < U 2 U_1<U_2 U1<U2,还是会发生翘尾现象,解决方法是,并联电抗器,即并补。

输电线路的传输功率极限

第一种方法

忽略所有的并联支路,只留下一个串联支路,如图所示。

在这里插入图片描述

得到传输功率的表达式:
P + j Q = U ˙ 2 I ˙ ∗ = U ˙ 2 ( U ˙ 1 − U ˙ 2 R + j X ) ∗ = U ˙ 2 U ˙ 1 ∗ − U ˙ 2 ∗ R − j X R + j X R + j X = U ˙ 2 U ˙ 1 ∗ − U 2 2 R 2 + X 2 ( R + j X ) P+jQ=\dot{U}_2\dot{I}^*=\dot{U}_2\left(\frac{\dot{U}_1-\dot{U}_2}{R+jX}\right)^*=\dot{U}_2\frac{\dot{U}_1^*-\dot{U}_2^*}{R-jX}\frac{R+jX}{R+jX}\\\\ =\frac{\dot{U}_2\dot{U}_1^*-U_2^2}{R^2+X^2}(R+jX) P+jQ=U˙2I˙=U˙2(R+jXU˙1U˙2)=U˙2RjXU˙1U˙2R+jXR+jX=R2+X2U˙2U˙1U22(R+jX)

U ˙ 1 = U 1 ∠ θ 1 , U ˙ 2 = U 2 ∠ θ 2 , δ = θ 1 − θ 2 \dot{U}_1=U_1\angle\theta_1,\dot{U}_2=U_2\angle\theta_2,\delta=\theta_1-\theta_2 U˙1=U1θ1,U˙2=U2θ2,δ=θ1θ2。则可得:
P + j Q = U 2 ∠ θ 2 ⋅ U 1 ∠ ( − θ 1 ) − U 2 2 R 2 + X 2 ( R + j X ) = U 1 U 2 ( cos ⁡ δ − j sin ⁡ δ ) − U 2 2 R 2 + X 2 ( R + j X ) P+jQ=\frac{U_2 \angle \theta_2 \cdot U_1\angle(-\theta_1)-U_2^2}{R^2+X^2}(R+jX)=\frac{U_1U_2(\cos\delta-j\sin\delta)-U_2^2}{R^2+X^2}(R+jX) P+jQ=R2+X2U2θ2U1(θ1)U22(R+jX)=R2+X2U1U2(cosδjsinδ)U22(R+jX)

假设是无损耗线路,则 R = 0 R=0 R=0,所以化简上式可得:
P = U 1 U 2 X sin ⁡ δ Q = U 2 X ( U 1 cos ⁡ δ − U 2 ) P=\frac{U_1U_2}{X}\sin\delta\\\\ Q=\frac{U_2}{X}(U_1\cos\delta-U_2) P=XU1U2sinδQ=XU2(U1cosδU2)

所以可从三角函数的最大值得到最大传输功率 P m a x = U 1 U 2 X P_{max}=\frac{U_1U_2}{X} Pmax=XU1U2

第二种方法

忽略所有的并联支路和电阻,只留下一个串联电抗,如图所示。

在这里插入图片描述

可以导出首端电压为,取末端电压 U ˙ 2 \dot{U}_2 U˙2为参考向量:
U ˙ 1 = U ˙ 2 + d U ˙ 2 = ( U 2 + Q 2 X U 2 ) + j P 2 X U 2 \dot{U}_1=\dot{U}_2+\mathrm{d}\dot{U}_2=\left(U_2+\frac{Q_2X}{U_2}\right)+j\frac{P_2X}{U_2} U˙1=U˙2+dU˙2=(U2+U2Q2X)+jU2P2X

令线路始端电压为:
U ˙ 1 = U 1 ∠ θ = U 1 ( cos ⁡ θ + j sin ⁡ θ ) \dot{U}_1=U_1\angle\theta=U_1(\cos\theta+j\sin\theta) U˙1=U1θ=U1(cosθ+jsinθ)

比较上述两式的虚部,可得下面的等式:
P 2 X U 2 = U 1 sin ⁡ θ \frac{P_2X}{U_2}=U_1\sin\theta U2P2X=U1sinθ
变换后可得输出功率的大小为:
P 2 = U 1 U 2 X sin ⁡ δ P_2=\frac{U_1U_2}{X}\sin\delta P2=XU1U2sinδ

如图所示就是输电线路传输功率和两端电压的相位差之间的关系图,是一个三角函数曲线。在 θ = π 2 \theta=\frac{\pi}{2} θ=2π处取得最大值。但实际中的 θ \theta θ很小,约为15°到30°,所以实际中 P ≪ P m a x P\ll P_{max} PPmax

在这里插入图片描述

想要提高传输功率,可以:

  1. 提高线路的电压等级,采用更高一级的额定电压。
  2. 减小线路的电抗。
    • 采用分裂导线。相当于并联电抗。
    • 线路上串联电容器,用其容抗抵消线路的一些感抗。

输电线路的功率圆圈

线路的运行有这几个要求:

  • 两个电压约束
    U 1 − U 2 U N × 100 % < 10 % Δ U = P R + Q X U < 10 % \frac{U_1-U_2}{U_N}\times 100\%<10\%\\\\ \Delta U=\frac{PR+QX}{U}<10\% UNU1U2×100%<10%ΔU=UPR+QX<10%
  • 热稳定约束,即 I 2 R I^2R I2R不能大。

下图就是线路的等值电路图,忽略了并联支路。

在这里插入图片描述

首先使用有名值计算:
U ˙ 1 − U ˙ 2 = 3 I ˙ ( P + j X ) \dot{U}_1-\dot{U}_2=\sqrt{3}\dot{I}(P+jX) U˙1U˙2=3 I˙(P+jX)

因为 S ~ = 3 U ˙ I ˙ ∗ \widetilde{S}=\sqrt{3}\dot{U}\dot{I}^* S =3 U˙I˙,所以有:
U ˙ 1 − U ˙ 2 = ( S U 2 ) ∗ Z \dot{U}_1-\dot{U}_2=\left(\frac{S}{U_2}\right)^*Z U˙1U˙2=(U2S)Z

对于复数量,有: S ~ = S ∠ ϕ = P + j Q , Z = ∣ Z ∣ ∠ ϕ Z = R + j X \widetilde{S}=S\angle \phi=P+jQ,Z=|Z|\angle\phi_Z=R+jX S =Sϕ=P+jQ,Z=Z∣∠ϕZ=R+jX

则继续化上式为:
d U ˙ = U ˙ 1 − U ˙ 2 = S Z U 2 ∗ ∠ ϕ Z − ϕ \mathrm{d}\dot{U}=\dot{U}_1-\dot{U}_2=\frac{SZ}{U_2^*}\angle\phi_Z-\phi dU˙=U˙1U˙2=U2SZϕZϕ

在标幺制下进行运算。先选择基准值: U B = U N , S B = U N 2 Z , Z B = Z U_B=U_N,S_B=\frac{U_N^2}{Z},Z_B=Z UB=UN,SB=ZUN2,ZB=Z
d U ˙ ∗ = S ∗ U 2 ∗ ∗ ∠ ϕ Z − ϕ \mathrm{d}\dot{U}_*=\frac{S_*}{U_{2*}^*}\angle\phi_Z-\phi dU˙=U2SϕZϕ

由于末端电压接近于额定电压,所以 U 2 ∗ U_{2*} U2接近于1,则可以做出下面的近似:
d U ˙ ∗ ≈ S ∗ ∠ ϕ Z − ϕ = ∠ ϕ Z ( S ∗ cos ⁡ ϕ − j S ∗ sin ⁡ ϕ ) = ∠ ϕ Z ( P ∗ − j Q ∗ ) = ∠ ϕ Z P ∗ − ∠ ( ϕ Z − π 2 ) Q ∗ \mathrm{d}\dot{U}_*\approx S_*\angle\phi_Z-\phi=\angle\phi_Z(S_*\cos\phi-jS_*\sin\phi)=\angle\phi_Z(P_*-jQ_*)=\angle\phi_ZP_*-\angle(\phi_Z-\frac{\pi}{2})Q_*\\\\ dU˙SϕZϕ=ϕZ(ScosϕjSsinϕ)=ϕZ(PjQ)=ϕZP(ϕZ2π)Q

另外可以求出 ∣ d U ˙ ∗ ∣ |\mathrm{d}\dot{U}_*| dU˙
∣ d U ˙ ∗ ∣ = ∣ S ∗ ∣ = P ∗ 2 + Q ∗ 2 o r ∣ d U ˙ ∗ ∣ = ∣ S ∗ ∣ = ∣ I ˙ ∗ ∗ U 2 ∗ ∣ ≈ ∣ I ˙ ∗ ∣ |\mathrm{d}\dot{U}_*|=|S_*|=\sqrt{P_*^2+Q_*^2}\\\\ or\quad |\mathrm{d}\dot{U}_*|=|S_*|=|\dot{I}_*^*U_{2*}|\approx|\dot{I}_*| dU˙=S=P2+Q2 ordU˙=S=I˙U2I˙

由于有热稳定要求,即 I 2 R < η ⇒ I 2 < η R ⇒ ∣ d U ˙ ∗ ∣ 2 < η R I^2R<\eta\Rightarrow I^2<\frac{\eta}{R}\Rightarrow |\mathrm{d}\dot{U}_*|^2<\frac{\eta}{R} I2R<ηI2<RηdU˙2<Rη,这说明热稳定的约束是一个圆区域,这个圆的圆心是 U ˙ 2 \dot{U}_2 U˙2向量的终点。

另外再画出电压约束,要求电压降落<10%,还要要求 ∣ U ˙ 2 ∗ ∣ > 0.9 |\dot{U}_{2*}|>0.9 U˙2>0.9,则这两个圆弧都是以 U ˙ 2 \dot{U}_2 U˙2向量的起点为圆心的。

三个区域的重叠部分就是系统允许的运行位置。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/1287.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

4月阿里offer被毁,我该怎么进字节?

在校招求职的浪潮中&#xff0c;有些故事总是让人唏嘘不已。比如最近在社交平台上广泛讨论的一个话题&#xff1a;“4月阿里offer被毁&#xff0c;我该怎么进字节&#xff1f;”这不仅反映了当下职场的变动性&#xff0c;也映射了求职者在面对突如其来的变故时的无助与挣扎。 …

QT 按钮的工具提示tooltips设置字体大小颜色与背景

QT 按钮的工具提示tooltips设置字体颜色与背景 main.cpp添加 mainwindow.cpp添加全局配置&#xff1a; 构造函数中&#xff1a; QToolTip::setFont(font3); //按钮提示信息通用设置 如下&#xff1a; MainWindow_oq::MainWindow_oq(QWidget *parent) : QMainWindow(parent)…

光伏电站智能勘探:无人机优势及流程详解

随着科技和互联网技术的不断发展&#xff0c;无人机在各个领域的应用越来越广泛&#xff0c;其中之一就是光伏电站智能勘探。利用无人机高清摄像头和传感器等设备&#xff0c;可以对光伏电站周边环境、日照情况、房屋状态进行全方面的勘探和记录&#xff0c;搭配卫星勘探、实地…

C语言中scanf、gets、fgets的区别

scanf、gets和fgets都是C语言中用于从标准输入读取数据的函数&#xff0c;但它们之间存在一些重要的差异&#xff1a; scanf&#xff1a; scanf是一个格式化输入函数&#xff0c;它可以根据指定的格式从标准输入读取数据。使用scanf读取字符串时&#xff0c;需要小心处理缓冲区…

springboot注解开发如何映射对象型数据

创作灵感 最近在帮学校写一款小程序时&#xff0c;有这样一个数据需要展示&#xff1a;一条申请记录&#xff0c;里面包含了申请时间、申请状态、申请所提供的六条活动记录等待&#xff0c;其中&#xff0c;申请所提供的六条活动记录为一个数组&#xff0c;数组中的每个元素又…

【BUG】Hexo|GET _MG_0001.JPG 404 (Not Found),hexo博客搭建过程图片路径正确却找不到图片

我的问题 我查了好多资料&#xff0c;结果原因是图片名称开头是_则该文件会被忽略。。。我注意到网上并没有提到这个问题&#xff0c;遂补了一下这篇博客并且汇总了我找到的所有解决办法。 具体检查方式&#xff1a; hexo生成一下静态资源&#xff1a; hexo g会发现这张图片…

二维码门楼牌管理应用平台建设:网格化管理的新篇章

文章目录 前言一、二维码门楼牌管理应用平台的建设背景二、二维码门楼牌管理应用平台的功能特点三、二维码门楼牌管理应用平台的实际应用四、二维码门楼牌管理应用平台的前景展望 前言 随着信息技术的飞速发展&#xff0c;二维码门楼牌管理应用平台的建设已成为城市网格化管理…

李廉洋:4.20国际黄金,原油本周行情分析及下周一走势分析。

荷兰国际银行表示&#xff0c;所谓的美国国债期限溢价的回升&#xff0c;将为10年期国债收益率重返5%的关键水平铺平道路。从理论上来说&#xff0c;可将10年期美债收益率拆解为未来短端利率的期望期限溢价(term premium)。所谓期限溢价&#xff0c;是对投资者持有长期债券的风…

第十四届蓝桥杯省赛C/C++大学B组真题-飞机降落

思路&#xff1a;根据数据范围N<10猜测用DFS剪枝&#xff0c;因为菜狗不会状压dp。根据题目&#xff0c;一般这种飞机的题都会用到贪心的思想。思想是每架飞机都要卡极限最早降落时间&#xff0c;从而保证后面的飞机能够有充足时间降落。 代码参考博客MQy大佬有详细解答 #i…

深度学习之CNN

目录 我们为什么要用CNN&#xff0c;或者说究竟是因为什么我们要用CNN 卷积操作的实现原理 补充知识 torch.nn.Conv2d&#xff08;&#xff09; 注意 torch.nn.functional.conv2d&#xff08;&#xff09; torch.nn.functional.conv2d&#xff08;&#xff09;和torch.nn.…

Fannel和Calico

一 1、路由器下面每一个端口都是一个vlan,隔离了广播包 192.168.1.0和192.168.2.0他们属于不同的vlan,没有三层交换机或者路由器,他们通不了信 不在同一个vlan,也就是子网,包就会走向网关(也就是路由器那里,路由器有路由表。查看目的地192.168.2.0在b口,从b口出去vlan…

互联网技术知识点总览——算法和数据结构

简介 本文对算法和数据结构的知识点整体框架进行梳理和分享如下&#xff1a;

Ubuntu无法安装向日癸15.2.0.63062_amd64.deb最新版

Ubuntu安装向日葵远程控制 安装包下载 安装方式 方式一&#xff1a;运行安装包安装 方式二&#xff1a;终端命令安装 通过以下教程可以快速的安装向日葵远程控制&#xff0c;本教程适用于Ubuntu18.04/20.04/22.04 安装包下载 进入向日葵远程控制下载官网下载向日葵远程控制Lin…

黑马程序员Linux简单入门学习笔记

Linux介绍 内核提供系统最核心的功能&#xff0c;如: 调度CPU、调度内存、调度文件系统、调度网络通讯、调度等系统级应用程序&#xff0c;可以理解为出厂自带程序&#xff0c;可供用户快速上手操作系统&#xff0c;如:文件管理器、任务管理器、图片查看、音乐播放等 目录结构 …

深度学习--CNN卷积神经网络(附图)

框架 让我们先看一下CNN的框架 卷积层中后是ReLu激活函数 &#xff0c;然后是深化池&#xff0c;之后是全连接&#xff0c;最后进行Softmax进行归一化。 所以&#xff0c;我们先逐一了解一下它们各个部分 全连接层 全连接层也称感知机&#xff0c;BP神经网络 全连接层&…

seatable部署之后network error【seatable】

这里写自定义目录标题 问题汇总 问题汇总 seatable服务部署后&#xff0c;组件显示正常运行&#xff0c;创建表单&#xff0c;显示Network error 点击错误信息&#xff0c;查看其跳转至另一个页面

AI大模型探索之路-实战篇1:基于OpenAI智能翻译助手实战落地

文章目录 前言一、需求规格描述二、系统架构设计三、技术实施方案四、核心功能说明五、开源技术选型六、代码实现细节1.图形用户界面&#xff08;GUI&#xff09;的开发2.大型模型调用的模块化封装3.文档解析翻译结果处理 总结 前言 在全球化的浪潮中&#xff0c;语言翻译需求…

节点加密技术:保障数据传输安全的新利器

随着信息技术的快速发展&#xff0c;网络数据的安全传输问题日益凸显。节点加密技术作为一种新兴的加密手段&#xff0c;正逐渐成为保障数据传输安全的重要工具。本文将探讨节点加密技术的原理、应用及其优势&#xff0c;并分析其未来的发展趋势。 节点加密技术的原理 节点加密…

(OSKS)代币:狂热的Meme币投资者指南

你那位对加密货币几乎一窍不通的朋友却是富豪。为什么&#xff1f;因为他们买了一枚硬币&#xff0c;上面有一只戴着帽子的狗。 帽子一直戴着&#xff0c;所以价格一直在上涨。该Meme币即将成为拉斯维加斯球体的主流&#xff0c;这要归功于社区筹集了 650,000 美元的酷炫资金来…

Redis集合[持续更新]

Redis&#xff08;全称&#xff1a;Remote Dictionary Server 远程字典服务&#xff09;是一个开源的使用 ANSI C 语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value 数据库&#xff0c;并提供多种语言的 API。 数据结构 1. string 字符串 字符串类型是 Redis 最…