AI大模型探索之路-实战篇1:基于OpenAI智能翻译助手实战落地

文章目录

  • 前言
  • 一、需求规格描述
  • 二、系统架构设计
  • 三、技术实施方案
  • 四、核心功能说明
  • 五、开源技术选型
  • 六、代码实现细节
    • 1.图形用户界面(GUI)的开发
    • 2.大型模型调用的模块化封装
    • 3.文档解析翻译结果处理
  • 总结


前言

在全球化的浪潮中,语言翻译需求日益增长。市场上涌现出各式各样的翻译工具和平台,然而,免费的解决方案往往局限于简短文本的翻译。面对长篇文档,用户通常不得不转向付费服务。鉴于大型预训练语言模型(LLMs)在自然语言翻译上的显著优势,利用这些模型打造一款高效、经济的翻译工具,不仅能满足市场需求,同时亦具备极高的商业潜力与数据安全性。

针对这一需求,我们提出了一个基于OpenAI智能翻译助手的实战落地项目。该项目旨在开发一款支持多语种互译、兼容多种文件格式的翻译工具,以满足用户对长篇文档翻译的需求。


一、需求规格描述

1)支持包括但不限于PDF、Word等多样化的文件格式;
2)实现多语种间的互译功能;
3)兼容并优化多种大型预训练语言模型架构设计

二、系统架构设计

在这里插入图片描述

1)用户通过客户端上传待翻译文件;
2)系统后端进行文件解析,调用适配的大型模型执行翻译任务,并将翻译结果整合为新文档;
3)最终将翻译后的文档返回给用户以供下载。

三、技术实施方案

1)方案一:基于目标大型模型选择对应的API接口,自主封装模型调用流程;
2)方案二:采用LangChain框架,以简化大型模型集成过程,该框架负责隔离并封装模型调用细节。

本次先采用方案一实现,后续再引入LangChain框架简化改造。

四、核心功能说明

  1. 文本:高精度文本解析;
  2. 表格:表格内容智能辨识与翻译;
  3. 图片:图片内文字暂不予处理,考虑到其处理难度及相对较低的需求优先级。

五、开源技术选型

选择对文本和表格支持性比较好的pdfplumber
在这里插入图片描述

六、代码实现细节

1.图形用户界面(GUI)的开发

核心代码样例:

def launch_gui(args):global global_argsglobal_args = argsiface = gr.Interface(fn=translate_with_gui,inputs=[gr.File(label="上传PDF文件"),gr.Dropdown(choices=["中文", "日语", "西班牙语"], value="中文", label="选择目标语言"),  # 这里添加了default参数gr.Dropdown(choices=["OpenAIModel", "GLMModel"], value="OpenAIModel", label="选择大模型"),  # 这里添加了default参数gr.Radio(choices=["PDF", "Markdown","word"], value="PDF", label="选择输出格式")  # 选择输出格式],outputs=gr.Textbox(label="输出结果"))iface.launch()

在这里插入图片描述

2.大型模型调用的模块化封装

核心代码样例:

class OpenAIModel(Model):def __init__(self, model: str, api_key: str):self.model = modelopenai.api_key = api_keydef make_request(self, prompt):attempts = 0while attempts < 3:try:if self.model == "gpt-3.5-turbo":response = openai.ChatCompletion.create(model=self.model,messages=[#{"role": "system", "content": super.get_system_prompt()},{"role": "user", "content": prompt},])translation = response.choices[0].message['content'].strip()else:response = openai.Completion.create(model=self.model,prompt=prompt,max_tokens=150,temperature=0)translation = response.choices[0].text.strip()return translation, True

3.文档解析翻译结果处理

1)文档解析:引用工具插件将对文档进行解析,页、内容(文段、表格、图片)
2)文档翻译:调用大模型API翻译:文段、表格
3)文档生成:将翻译后的内容回写生成新文档、输出下载
核心代码样例:

# 定义一个PDFTranslator类
class PDFTranslator:# 定义初始化函数,接收一个model_name参数def __init__(self, model: Model):# 创建一个model对象,用于执行翻译任务self.model = model# 创建一个PDFParser对象,用于解析PDF文件self.pdf_parser = PDFParser()# 创建一个Writer对象,用于写入文件self.writer = Writer()def translate_pdf(self, pdf_file_path: str, file_format: str = 'PDF', target_language: str = 'Chinese',output_file_path: str = None, pages: Optional[int] = None):# 使用PDFParser对象解析指定的PDF文件,并将结果赋值给self.bookself.book = self.pdf_parser.parse_pdf(pdf_file_path, pages)# 遍历self.book的每一页for page_idx, page in enumerate(self.book.pages):# 遍历每一页的每个内容for content_idx, content in enumerate(page.contents):#生成提示语prompt = self.model.translate_prompt(content, target_language)LOG.debug(prompt)translation, status = self.model.make_request(prompt)LOG.info(translation)# 更新self.document.pages中的内容content.apply_translated_paragraphs(translation)"""用book对象存储翻译的结果"""self.book.pages[page_idx].contents[content_idx].set_translation(translation, status)# 使用Writer对象保存翻译后的书籍,并返回保存的路径return self.writer.save_translated_book(self.book, output_file_path, file_format)

总结

1)Prompt工程是翻译质量的核心,要求开发者精通其构造与优化技巧;
2)LangChain的使用大幅简化了大型模型的集成和操作,极大提升了开发效率;
3)展望更多应用场景,例如基于大型模型重构的翻译应用、语音点餐系统、智能旅行助手、订票平台以及打车服务等,均有望在不久的将来得到实质性进展。

通过这个项目的实施,我们成功地实现了一个基于OpenAI智能翻译助手的实战落地工具。该工具不仅满足了市场对长篇文档翻译的需求,还具备高效、经济的特点,并且保证了数据的安全性。我们相信,随着技术的不断进步和应用场景的扩展,该工具将在未来得到更广泛的应用和发展。

👉实战系列篇
AI大模型探索之路-实战篇2:基于CVP架构-企业级知识库实战落地
AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战

🔖更多专栏系列文章:AIGC-AI大模型探索之路

文章若有瑕疵,恳请不吝赐教;若有所触动或助益,还望各位老铁多多关注并给予支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/1261.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

节点加密技术:保障数据传输安全的新利器

随着信息技术的快速发展&#xff0c;网络数据的安全传输问题日益凸显。节点加密技术作为一种新兴的加密手段&#xff0c;正逐渐成为保障数据传输安全的重要工具。本文将探讨节点加密技术的原理、应用及其优势&#xff0c;并分析其未来的发展趋势。 节点加密技术的原理 节点加密…

(OSKS)代币:狂热的Meme币投资者指南

你那位对加密货币几乎一窍不通的朋友却是富豪。为什么&#xff1f;因为他们买了一枚硬币&#xff0c;上面有一只戴着帽子的狗。 帽子一直戴着&#xff0c;所以价格一直在上涨。该Meme币即将成为拉斯维加斯球体的主流&#xff0c;这要归功于社区筹集了 650,000 美元的酷炫资金来…

Redis集合[持续更新]

Redis&#xff08;全称&#xff1a;Remote Dictionary Server 远程字典服务&#xff09;是一个开源的使用 ANSI C 语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value 数据库&#xff0c;并提供多种语言的 API。 数据结构 1. string 字符串 字符串类型是 Redis 最…

Unity实现动态数字变化

最近的项目需要动态显示数字&#xff0c;所以使用Text组件&#xff0c;将数字进行变化操作过程记录下来。 一、UI准备 1、新建一个Text组件 2、新建C#脚本 3、将Text挂载到脚本上 二、函数说明 1、NumberChange 方法 NumberChange 方法接收四个参数&#xff1a;初始数字 in…

项目管理-项目范围管理

目录 一、概述 二、范围计划的编制 2.1 项目中包含的范围 2.1.1 产品范围 2.1.2 工作范围 2.1.3 总结 2.2 范围计划编制的成果 2.2.1 范围管理计划 2.2.1.1 概述 2.2.1.2 内容 三、创建工作分解结构 3.1 概述 3.2 WBS目的和用途 3.3 WBS分层结构 3.3.1 分层结构图…

【云计算】云数据中心网络(六):私网连接

《云网络》系列&#xff0c;共包含以下文章&#xff1a; 云网络是未来的网络基础设施云网络产品体系概述云数据中心网络&#xff08;一&#xff09;&#xff1a;VPC云数据中心网络&#xff08;二&#xff09;&#xff1a;弹性公网 IP云数据中心网络&#xff08;三&#xff09;…

网络安全产品---扛DDOS产品

DDOS攻击 what 分布式拒绝服务攻击&#xff08;Distributed Denial of Service attack&#xff09; how 攻击者通过控制大量的网络设备&#xff08;傀儡机&#xff09;&#xff0c;向攻击目标&#xff08;例如网站、Web服务器、网络设备等&#xff09;发出海量的、但并不是…

SQLite R*Tree 模块(三十三)

返回&#xff1a;SQLite—系列文章目录 上一篇&#xff1a;SQLite FTS3 和 FTS4 扩展(三十二) 下一篇:SQLite轻量级会话扩展&#xff08;三十四&#xff09; 1. 概述 R-Tree 是一个特殊的 专为执行范围查询而设计的索引。R-树最常见的是 用于地理空间系统&#xff0c;其中…

前端三剑客 HTML+CSS+JavaScript ① 基础入门

光永远会照亮你 —— 24.4.18 一、C/S架构和B/S架构 C:Client&#xff08;客户端&#xff09; B:Browser&#xff08;浏览器&#xff09; S:Server&#xff08;服务器&#xff09; C/S 架构&#xff1a; B/S 架构&#xff1a; 大型专业应用、安全性要求较高的应用&#xff0c;还…

binary tree Leetcode 二叉树算法题

144.二叉树的前序遍历 前序遍历是&#xff1a;根-左-右 所以记录序列的的时候放在最前面 递归 class Solution {List<Integer> ans new ArrayList<>();public List<Integer> preorderTraversal(TreeNode root) {if(root null) return ans;ans.add(root…

【HCIP】OSPF的高级特性

OSPF的高级特性1 --- 不规则区域 一、OSPF不规则区域类型 产生原因&#xff1a;区域划分不合理&#xff0c;导致的问题 1、非骨干区域无法和骨干区域保持连通 2、骨干区域被分割 造成后果&#xff1a;非骨干区域没和骨干区域相连&#xff0c;导致ABR将不会帮忙转发区域间的路由…

【数据结构练习题】堆——top-k问题

♥♥♥♥♥个人主页♥♥♥♥♥ ♥♥♥♥♥数据结构练习题总结专栏♥♥♥♥♥ ♥♥♥♥♥上一章&#xff1a;【数据结构练习题】二叉树(1)——1.相同的树2.另一颗树的子树3.翻转二叉树4.平衡二叉树5.对称二叉树♥♥♥♥♥ 文章目录 1.top-k问题1.1问题描述1.2思路分析1.3绘图分析…

理光打印机设置扫描文件到共享文件夹教程(线上和现场)

在线设置。 1.点击用户工具/计数器按钮。 2.点击系统设置。 3.点击端口设置&#xff0c;点击机器IPV4地址。 4.获得打印机IP地址。 5.回到共享电脑&#xff0c;新建一个账户或者使用当前账户&#xff0c;为了隐私安全起见&#xff0c;最好设置密码。 6.关闭防火墙。 7.启用…

Mac 下安装PostgreSQL经验

使用homebrew终端软件管理器去安装PostgreSQL 如果没有安装brew命令执行以下命令 /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" 沙果开源物联网系统 SagooIoT | SagooIoT 1.使用命令安装postgreSQL brew i…

JavaScript之分时函数、分时间段渲染页面、提高用户体验、参数归一化、高阶函数、分段、appendChild、requestIdleCallback

MENU 前言效果图html原始写法优化方式一(参数归一化)优化方式二(当浏览器不支持requestIdleCallback方法的时候)优化方式三(判断环境) 前言 当前需要向页面插入十万个div元素&#xff0c;如果使用普通的渲染方式&#xff0c;会造成延迟。这时候就需要通过分时函数来实现渲染了。…

【Pytorch】VSCode实用技巧 - 默认终端修改为conda activate pytorch

VScode修改配置使得启动终端为conda环境 文章目录 VScode修改配置使得启动终端为conda环境1、找到settings.json 文件2、查找 conda / mamba 相关内容3、编辑 settings.json 文件4、异常处理5、补充检验 VScode跑项目&#xff0c;在启动pytorch项目时往往会有千奇百怪的问题&am…

大学生前端学习第一天:了解前端

引言&#xff1a; 哈喽&#xff0c;各位大学生们&#xff0c;大家好呀&#xff0c;在本篇博客&#xff0c;我们将引入一个新的板块学习&#xff0c;那就是前端&#xff0c;关于前端&#xff0c;GPT是这样描述的&#xff1a;前端通常指的是Web开发中用户界面的部分&#xff0c;…

数据库设计的三范式

简单来说就是&#xff1a;原子性、唯一性、独立性 后一范式都是在前一范式已经满足的情况进行附加的内容 第一范式&#xff08;1NF&#xff09;&#xff1a;原子性 存储的数据应不可再分。 不满足原子性&#xff1a; 满足原子性&#xff1a; 第二范式&#xff08;2NF&#xf…

探索设计模式的魅力:开启智慧之旅,AI与机器学习驱动的微服务设计模式探索

​&#x1f308; 个人主页&#xff1a;danci_ &#x1f525; 系列专栏&#xff1a;《设计模式》 &#x1f4aa;&#x1f3fb; 制定明确可量化的目标&#xff0c;坚持默默的做事。 ✨欢迎加入探索AI与机器学习驱动的微服务设计模式之旅✨ 亲爱的科技爱好者们&#xff0c;有没…

LabVIEW多设备控制与数据采集系统

LabVIEW多设备控制与数据采集系统 随着科技的进步&#xff0c;自动化测试与控制系统在工业、科研等领域的应用越来越广泛。开发了一种基于LabVIEW平台开发的多设备控制与数据采集系统&#xff0c;旨在解决多设备手动设置复杂、多路数据显示不直观、数据存储不便等问题。通过RS…