【平衡二叉树】AVL树(双旋)

图片名称
🎉博主首页: 有趣的中国人

🎉专栏首页: C++进阶

🎉其它专栏: C++初阶 | Linux | 初阶数据结构

在这里插入图片描述

小伙伴们大家好,本片文章将会讲解AVL树左双选和右双旋的相关内容。


如果看到最后您觉得这篇文章写得不错,有所收获,麻烦点赞👍、收藏🌟、留下评论📝。您的支持是我最大的动力,让我们一起努力,共同成长!

文章目录

  • `1. 左右双旋`
  • `1. 右左双旋`
  • `3. AVL的验证`
  • `3. AVL的验证`
  • `3. AVL的性能`



1. 左右双旋


⚡出现情况
在这里插入图片描述

1. 此处在30的左子树或者右子树新增节点都会引发旋转;
2. 如果单纯的对根节点进行右单旋,并不能解决左边高的问题,会变成右边高,所以要进行双旋,步骤如下:

1. 先对parent->left节点进行左单旋

在这里插入图片描述

2. 再对根节点进行右单旋

在这里插入图片描述
完整步骤
在这里插入图片描述

我们假设顶端节点叫做parentparent->left 叫做subLsubL->right 叫做subLR


左右双旋后满足二叉搜索树的性质:

左右双旋后,实际上就是让subLR的左子树和右子树,分别作为subLparent的右子树和左子树,再让subLparent分别作为subLR的左右子树,最后让subLR作为整个子树的根。

1. subLR的左子树当中的结点本身就比subL的值大,因此可以作为subL的右子树。

2. subLR的右子树当中的结点本身就比parent的值小,因此可以作为parent的左子树。

3. 经过步骤1、2后,subL及其子树当中结点的值都就比subLR的值小,而parent及其子树当中结点的值都就比subLR的值大,因此它们可以分别作为subLR的左右子树。


左右双旋后,平衡因子的更新随着subLR原始平衡因子的不同分为以下三种情况:

1、subLR原始平衡因子是-1时,左右双旋后parent、subL、subLR的平衡因子分别更新为1、0、0
在这里插入图片描述


2、subLR原始平衡因子是1时,左右双旋后parent、subL、subLR的平衡因子分别更新为0、-1、0
在这里插入图片描述


3、subLR原始平衡因子是0时,左右双旋后parent、subL、subLR的平衡因子分别更新为0、0、0
在这里插入图片描述

代码如下:

void RotateLR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;//1、以subL为旋转点进行左单旋RotateL(subL);//2、以parent为旋转点进行右单旋RotateR(parent);if (bf == -1){subL->_bf = 0;parent->_bf = 1;subLR->_bf = 0;}else if (bf == 1){subL->_bf = -1;parent->_bf = 0;subLR->_bf = 0;}else if (bf == 0){subL->_bf = subLR->_bf = parent->_bf = 0;}else {assert(false);}
}


1. 右左双旋


⚡出现情况

在这里插入图片描述

1. 此处在60的左子树或者右子树新增节点都会引发旋转;
2. 如果单纯的对根节点进行左单旋,并不能解决右边高的问题,会变成左边高,所以要进行双旋,步骤如下:

1. 先对subR节点进行右单旋

在这里插入图片描述

2. 对parent节点进行左单旋

在这里插入图片描述
3. 完整步骤

在这里插入图片描述

右左双旋后满足二叉搜索树的性质:

右左双旋后,实际上就是让subRL的左子树和右子树,分别作为parent和subR的右子树和左子树,再让parent和subR分别作为subRL的左右子树,最后让subRL作为整个子树的根。

1、subRL的左子树当中的结点本身就比parent的值大,因此可以作为parent的右子树。

2、subRL的右子树当中的结点本身就比subR的值小,因此可以作为subR的左子树。

3、经过步骤1、2后,parent及其子树当中结点的值都就比subRL的值小,而subR及其子树当中结点的值都就比subRL的值大,因此它们可以分别作为subRL的左右子树。


右左双旋后,平衡因子的更新随着subRL原始平衡因子的不同分为以下三种情况:

1、subRL原始平衡因子是1时,右左双旋后parent、subR、subRL的平衡因子分别更新为-1、0、0
在这里插入图片描述


2、subRL原始平衡因子是-1时,右左双旋后parent、subR、subRL的平衡因子分别更新为0、1、0
在这里插入图片描述


3、subRL原始平衡因子是0时,左右双旋后parent、subR、subRL的平衡因子分别更新为0、0、0
在这里插入图片描述

代码如下:

void RotateRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(subR);RotateL(parent);if (bf == 1){subR->_bf == 0;parent->_bf = -1;subRL->_bf = 0;}else if (bf == -1){subR->_bf = 1;parent->_bf = 0;subRL->_bf = 0;}else if (bf == 0){subR->_bf = parent->_bf = subRL->_bf = 0;}else {assert(false);}
}


3. AVL的验证


AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    • 如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
  2. 验证其为平衡树
    • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
    • 节点的平衡因子是否计算正确

详解代码:

public:void InOrder()
{_InOrder(_root);
}int Size()
{_Size(_root);
}int Height()
{_Height(_root);
}bool IsBalanceTree()
{return _IsBalanceTree(_root);
}private:bool _IsBalanceTree(Node* root)
{if (root == nullptr){return true;}int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);// 计算左右子树高度差绝对值int dec = abs(leftHeight - rightHeight);// 如果比1大说明不平衡if (dec > 1){cout << root->_kv.first << endl;return false;}// 检查平衡因子是否计算正确if (rightHeight - leftHeight != root->_bf){cout << root->_kv.first << endl;return false;}return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
}
int _Height(Node* root)
{if (root == nullptr){return 0;}int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);return max(leftHeight, rightHeight) + 1;
}int _Size(Node* root)
{if (root == nullptr){return 0;}return _Size(root->_left) + _Size(root->_right) + 1;
}void _InOrder(Node* root)
{if (root == nullptr){return;}_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);
}

3. AVL的验证


⚡验证示例1

int a[] = {16, 3, 7, 11, 9, 26, 18, 14, 15};

验证代码:

void AVLTest1()
{AVLTree<int, int> t;int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };for (auto& e : a){t.Insert({ e,e });cout << "Insert:" << e << "->" << t.IsBalanceTree() << endl;}t.InOrder();
}

在这里插入图片描述

⚡验证示例2

int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };

验证代码:

void AVLTest1()
{AVLTree<int, int> t;int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };for (auto& e : a){t.Insert({ e,e });cout << "Insert:" << e << "->" << t.IsBalanceTree() << endl;}t.InOrder();
}

在这里插入图片描述



3. AVL的性能


AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/12213.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++基础语法之数组

一、一维数组 在C中&#xff0c;一维数组是一系列具有相同数据类型的元素的集合。它们在内存中是连续存储的&#xff0c;可以通过索引访问每个元素。 一维数组的声明形式如下&#xff1a; 数据类型 数组名[常量表达式] 例如&#xff1a; // 声明一个能存储10个整数的数组 in…

【AI学习】对指令微调(instruction tuning)的理解

前面对微调&#xff08;Fine-tuning&#xff09;的学习中&#xff0c;提到指令微调。当时&#xff0c;不清楚何为指令微调&#xff0c;也一直没来得及仔细学习。 什么是指令微调&#xff1f;LLM经过预训练后&#xff0c;通过指令微调提升模型的指令遵循能力。所谓指令&#xf…

车载GPT爆红前夜:一场巨头竞逐的游戏

在基于GPT-3.5的ChatGPT问世之前&#xff0c;OpenAI作为深度学习领域并不大为人所看好的技术分支玩家&#xff0c;已经在GPT这个赛道默默耕耘了七八年的时间。 好几年的时间里&#xff0c;GPT始终没有跨越从“不能用”到“能用”的奇点。转折点发生在2020年6月份发布的GPT-3&a…

【STM32】状态机实现定时器按键消抖,处理单击、双击、三击、长按事件

目录 一、简单介绍 二、模块与接线 三、cubemx配置 四、驱动编写 状态图 按键类型定义 参数初始化/复位 按键扫描 串口重定向 主函数 五、效果展示 六、驱动附录 key.c key.h 一、简单介绍 众所周知&#xff0c;普通的机械按键会产生抖动&#xff0c;可以采取硬件…

注意力机制篇 | YOLOv8改进之在C2f模块引入反向残差注意力模块iRMB | CVPR 2023

前言:Hello大家好,我是小哥谈。反向残差注意力模块iRMB是一种用于图像分类和目标检测的深度学习模块。它结合了反向残差和注意力机制的优点,能够有效地提高模型的性能。在iRMB中,反向残差指的是将原始的残差块进行反转,即将卷积操作和批量归一化操作放在了后面。这样做的好…

软件工程期末复习(6)需求分析的任务

需求分析 需求分析的任务 “建造一个软件系统的最困难的部分是决定要建造什么……没有别的工作在做错时会如此影响最终系统&#xff0c;没有别的工作比以后矫正更困难。” —— Fred Brooks 需求难以建立的原因&#x…

矩阵相关运算1

矩阵运算是线性代数中的一个核心部分&#xff0c;它包含了许多不同类型的操作&#xff0c;可以应用于各种科学和工程问题中。 矩阵加法和减法 矩阵加法和减法需要两个矩阵具有相同的维度。操作是逐元素进行的&#xff1a; CAB or CA−B其中 A,B 和 C 是矩阵&#xff0c;且 C…

7nm项目之模块实现——02 Placeopt分析

一、Log需要看什么 1.log最后的error 注意&#xff1a;warnning暂时可以不用过于关注&#xff0c;如果特别的warning出现问题&#xff0c;在其他方面也会体现 2.run time 在大型项目实际开发中&#xff0c;周期一般较长&#xff0c;可能几天过这几周&#xff0c;所以这就需要…

探讨 cs2019 c++ 的STL 库中的模板 conjunction 与 disjunction

&#xff08;1&#xff09;在 STL 库源码中这俩模板经常出现&#xff0c;用来给源码编译中的条件选择&#xff0c;模板的版本选择等提供依据。先给出其定义&#xff1a; 以及&#xff1a; 可以得出结论&#xff1a; conj 是为了查找逻辑布尔型模板参数中的第一个 false &#x…

vs2019中__cplusplus一直显示199711

vs2019中__cplusplus一直显示199711&#xff0c;如何修改&#xff1f; 打开属性->C/C->命令行&#xff0c;其他选项&#xff0c;输入&#xff1a;/Zc:__cplusplus

aws s3

列出关键点 创建s3 设置s3策略&#xff0c;所有人访问 { "Version": "2012-10-17", "Statement": [ { "Sid": "VisualEditor1", "Effect": "Allow", …

C#窗体程序设计笔记:如何调出控件工具箱,并设置控件的属性

文章目录 调出控件工具箱设置控件属性 调出控件工具箱 使用Visual Studio打开C#解决方案后&#xff0c;初始界面如下图所示&#xff1a; 接着&#xff0c;在上方的菜单栏依次选择“视图”“工具箱”&#xff0c;即可打开工具箱&#xff0c;如下图所示&#xff1a; 设置控件属…

Android开发,日志级别

5个日志级别 Verbose (VERBOSE): 这是最低的日志级别&#xff0c;用于输出最为详尽的信息&#xff0c;包括开发和调试过程中的各种细节。在Log类中对应的方法是Log.v()。Debug (DEBUG): 此级别用于输出调试信息&#xff0c;帮助开发者理解程序运行流程或状态。通过Log.d()方法…

产品品牌CRUD

文章目录 1.renren-generator生成CRUD1.数据库表设计1.数据表设计2.分析 2.代码生成器生成crud1.查看generator.properties&#xff08;不需要修改&#xff09;2.修改application.yml 连接的数据库修改为云数据库3.启动renren-generator模块4.浏览器访问 http://localhost:81/5…

解决使用Vue.js前端与Flask后端API交互时跨源资源共享问题

我在使用flask以及Vue做一个项目时遇到了Vue前端与Flask后端API交互的问题就是前端获取不到后端返回的数据&#xff0c;报错&#xff1a; 上网查说是跨域问题&#xff0c;于是找了一些解决办法&#xff0c;就是可以通过设置响应头的 Access-Control-Allow-Origin 字段来允许所有…

易货模式:引领交易新潮流,实现资源高效利用

随着全球经济的繁荣和科技的日新月异&#xff0c;传统的交易模式正面临革新。在追求高效、便捷与环保的当下&#xff0c;易货模式作为一种新兴的交易方式&#xff0c;逐渐崭露头角&#xff0c;受到越来越多人的青睐。 易货模式&#xff0c;简而言之&#xff0c;就是通过平台或在…

知乎广告推广投放流程以及价格?

知乎作为一个拥有庞大高质量用户群体的知识分享平台&#xff0c;成为了众多品牌不可忽视的广告投放渠道。知乎不仅汇聚了各行各业的专业人士&#xff0c;其独特的社区氛围也为品牌提供了精准触达目标受众的机会。知乎广告推广的投放流程、费用标准&#xff0c;云衔科技提供的专…

刷代码随想录有感(65):回溯算法——组合问题

题干&#xff1a; 代码&#xff1a; class Solution { public:vector<vector<int>> res;vector<int> tmp;void backtracking(int n, int k, int start){if(tmp.size() k){res.push_back(tmp);return;}for(int i start; i < n; i){tmp.push_back(i);bac…

全栈开发之路——前端篇(9)插槽、常用api和全局api

全栈开发一条龙——前端篇 第一篇&#xff1a;框架确定、ide设置与项目创建 第二篇&#xff1a;介绍项目文件意义、组件结构与导入以及setup的引入。 第三篇&#xff1a;setup语法&#xff0c;设置响应式数据。 第四篇&#xff1a;数据绑定、计算属性和watch监视 第五篇 : 组件…