引言
事万物都有自己的单元体系,若干个小单体组成一个个大的个体。就像拼乐高一样,可以自由组合。所以说,如果能熟悉最小单元,就意味着我们抓住了事物的本事,再复杂的问题也会迎刃而解。
存储单元
存储器范围比较大,但是数据具体怎么存储,有自己的最小存储单元。
1、数据持久化存储磁盘里,磁盘的最小单元是扇区,一个扇区的大小是 512个字节
2、文件系统的最小单元是块,一个块的大小是 4K
3、InnoDB存储引擎,有自己的最小单元,称之为页,一个页的大小是16K
扇区、块、页这三者的存储关系?
mysql数据库中,table表中的记录都是存储在页中,那么一页可以存多少行数据?假如一行数据的大小约为1K字节,那么按 16K / 1K = 16,可以计算出一页大约能存放16条数据。
mysql 的最小存储单元叫做“页”,这么多的页是如何构建一个庞大的数据组织,我们又如何知道数据存储在哪一个页中?
如果逐条遍历,性能肯定很差。为了提升查找速度,我们引入了B+树,先来看下B+树的存储结构
页除了可以存放数据(叶子节点),还可以存放健值和指针(非叶子节点),当然他们是有序的。这样的数据组织形式,我们称为索引组织表。
如:上图中 page number=3的页,该页存放键值和指向数据页的指针,这样的页由N个键值+指针组成
B+ 树是如何检索记录?
首先找到根页,你怎么知道一张表的根页在哪呢?
其实每张表的根页位置在表空间文件中是固定的,即page number=3的页
找到根页后通过二分查找法,定位到id=5的数据应该在指针P5指向的页中
然后再去page number=5的页中查找,同样通过二分查询法即可找到id=5的记录
查询数据库时,不论读一行,还是读多行,都是将这些行所在的整页数据加载,然后在内存中匹配过滤出最终结果。
表的检索速度跟树的深度有直接关系,毕竟一次页加载就是一次IO,而磁盘IO又是比较费时间。对于一张千万级条数B+树高度为3的表与几十万级B+树高度也为3的表,其实查询效率相差不大。
一棵树可以存放多少行数据?
假设B+树的深度为2
这棵B+树的存储总记录数 = 根节点指针数 * 单个叶子节点记录条数
那么指针数如何计算?
假设主键ID为bigint类型,长度为8字节,而指针大小在InnoDB源码中设置为6字节,这样一共14字节。
那么一个页中能存放多少这样的组合,就代表有多少指针,即 16384 / 14 = 1170。那么可以算出一棵高度为2 的B+树,能存放 1170 * 16 = 18720 条这样的数据记录。
同理:高度为3的B+树可以存放的行数 = 1170 * 1170 * 16 = 21902400
千万级的数据存储只需要约3层B+树,查询数据时,每加载一页(page)代表一次IO。所以说,根据主键id索引查询约3次IO便可以找到目标结果。