理论
自闭者主要受到遗传和环境因素的共同影响。由于自闭症是一种谱系障碍,因此每个自闭症患者都有独特的优势和挑战。自闭症患者学习、思考和解决问题的方式可以是高技能的,也可以是严峻的挑战。研究表明,高质量的早期干预可以改善学习、沟通和社交技能,以及潜在的大脑发育。然而诊断过程可能需要数年时间。本项目主要实现自闭者的早期检测(正常vs非正常),为早期筛查和干预提供及时的预警。
工具
自闭者脑电数据集
方法实现
数据加载
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import mutual_info_classif,f_classif
from sklearn.pipeline import Pipeline
from sklearn.model_selection import cross_val_score,StratifiedKFold
from sklearn.feature_selection import RFE
from sklearn.feature_selection import RFECV
from sklearn.neural_network import MLPClassifier
from category_encoders.target_encoder import TargetEncoder
from sklearn.model_selection import GridSearchCV,RandomizedSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler,RobustScaler
from category_encoders import MEstimateEncoder
from sklearn.preprocessing import LabelEncoder
from imblearn.over_sampling import RandomOverSampler
from sklearn.inspection import permutation_importance
from imblearn.over_sampling import SMOTE
from sklearn.svm import SVC
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import StackingClassifier,VotingClassifier
from sklearn.metrics import roc_auc_score, roc_curve, confusion_matrix, ConfusionMatrixDisplaytrain=pd.read_csv('/Autism_Prediction/train.csv')
test=pd.read_csv('/Autism_Prediction/test.csv')
k-折交叉验证数据划分
np.random.seed(1) #I'm using this because there's some
#randomness in how the selectors work, without this, in each run we get different results
kf = StratifiedKFold(n_splits=2, random_state=None,shuffle=False) #for cross validation/ random_state
# is None because shuffle is False
score=[]for train_index, val_index in kf.split(train_set,y):#indices for train and validation setsX_train, X_val =train_set.iloc[train_index,:], train_set.iloc[val_index,:]y_train, y_val = y[train_index], y[val_index]#******************************* CLEANING ***********************************#for train setX_train.ethnicity=X_train.ethnicity.str.replace('others','Others',regex=False)X_train.ethnicity=X_train.ethnicity.str.replace('?','Others',regex=False)X_train.relation=X_train.relation.str.replace('?','Others',regex=False)X_train.relation=X_train.relation.str.replace('Health care professional','Others',regex=False)#for validation set:X_val.ethnicity=X_val.ethnicity.str.replace('others','Others',regex=False)X_val.ethnicity=X_val.ethnicity.str.replace('?','Others',regex=False)X_val.relation=X_val.relation.str.replace('?','Others',regex=False)X_val.relation=X_val.relation.str.replace('Health care professional','Others',regex=False)#***************************************ENCODING****************************************** #FOR ENCODING USE THE TRAINING VALUES, DO NOT CALCULATE THEM AGAIN FOR THE TEST SET!le=LabelEncoder()for col in ['jaundice','austim']:#for the training set:X_train[col]=le.fit_transform(X_train[col])#for the validation set:X_val[col]=le.transform(X_val[col])#*********************Encoding Relation Column***************************#create an encoding map, using the training set, then implementing it on val and test setsrel=X_train.relation.value_counts()rel=dict(zip(rel.index,range(len(rel))))#for the training set:X_train.relation=X_train.relation.map(rel)#for the validation set: if there's a category not present in the map, we'll assign sth. to itX_val.relation=X_val.relation.map(rel)X_val.relation[X_val.relation.isna()]=len(rel)#*********************Encoding Ethnicity Column***************************#create an encoding map, using the training set, then implementing it on val and test setseth=X_train.ethnicity.value_counts()eth=dict(zip(eth.index,range(len(eth))))#for the training set:X_train.ethnicity=X_train.ethnicity.map(eth)#for the validation set: if there's a category not present in the map, we'll assign sth. to itX_val.ethnicity=X_val.ethnicity.map(eth)X_val.ethnicity[X_val.ethnicity.isna()]=len(eth)#*****************************Encoding Country Of Res******************************#create an encoding map, using the training set, then implementing it on val and test setscont=X_train.contry_of_res.value_counts()cont=dict(zip(cont.index,range(len(cont))))#for the training set:X_train.contry_of_res=X_train.contry_of_res.map(cont)#for the validation set: if there's a category not present in the map, we'll assign sth. to itX_val.contry_of_res=X_val.contry_of_res.map(cont)X_val.contry_of_res[X_val.contry_of_res.isna()]=len(cont)#***************************Age Grouping***********************************# age_grouper(X_train)
# age_grouper(X_val)#*******************************Standardization*************************ss=StandardScaler()rs=RobustScaler()X_train[['result','age']]=rs.fit_transform(X_train[['result','age']])X_val[['result','age']]=rs.transform(X_val[['result','age']])
使用不同模型进行数据分类
model_list = ['KNearestNeighbours', 'DecisionTree', 'LGBM','XGBRF','CatBoostClassifier','RandomForest','Logistic Regression', 'SVC' ]
k近邻模型
# K Neighbors Classifierkn_clf = KNeighborsClassifier(n_neighbors=6)
kn_clf.fit(X_train,y_train)
y_pred=pd.DataFrame(kn_clf.predict_proba(X_val))[1].values
score.append(roc_auc_score(y_val,y_pred))np.array(score)cm = confusion_matrix(y_val, kn_clf.predict(X_val))
cmd = ConfusionMatrixDisplay(cm)
cmd.plot();
决策树模型
#DecissionTree
dt_clf = DecisionTreeClassifier(max_leaf_nodes=10, random_state=0, criterion='entropy')
dt_clf.fit(X_train, y_train)
y_pred=pd.DataFrame(dt_clf.predict_proba(X_val))[1].values
score.append(roc_auc_score(y_val,y_pred))np.array(score)cm = confusion_matrix(y_val, dt_clf.predict(X_val))
cmd = ConfusionMatrixDisplay(cm)
cmd.plot();
lightgbm模型
# lightgbm
import lightgbm
lgb_clf = lightgbm.LGBMClassifier(max_depth=2, random_state=4)
lgb_clf.fit(X_train, y_train)
y_pred=pd.DataFrame(lgb_clf.predict_proba(X_val))[1].values
score.append(roc_auc_score(y_val,y_pred))np.array(score)cm = confusion_matrix(y_val, lgb_clf.predict(X_val))
cmd = ConfusionMatrixDisplay(cm)
cmd.plot();
代码获取
相关问题和项目开发,欢迎交流沟通。