向量数据库 有必要走向专业化吗?
向量数据库系统的诞生,来源于具体业务需求——想要高效处理海量的向量数据,就需要更细分、更专业的数据基础设施,为向量构建专门的数据库处理系统。
但这种路径是必须的吗?
从产品层面讲,如果传统数据库厂商不单独研发向量数据库,那么基本上会主张支持原生的向量词嵌入和向量搜索引擎。
向量数据库市场的阵营,在ChatGPT影响之前就已经在形成分化,既包括提供开源组件的Milvus、Vald、Weaviate、Qdrant、Vaspa、Vearch、AquilaDB、Marqo,到商业化服务产品Pinecone,再到大厂谷歌推出的Vertex AI匹配引擎,数据库厂商Elastic和Redis基于自身提供的向量检索功能等等。
这其实也表明了当前向量数据库市场存在的两种路线:
一个是基于分析数据库的向量化执行引擎,英文是Vectorization,这是学术界2013年提出的名词,如Clickhouse、Spark引擎,是一种新型的执行方式,用于处理传统的结构化数据如表单等,更多的是结构化数据分析数据里面做并行执行的一种方式,在新型的处理芯片上进行处理。
另一个则是推出向量数据库(Vector Database),本质上处理的是AI领域的一类新型数据类型,例如对多模数据的处理,相比其