最新 SpringCloud微服务技术栈实战教程 微服务保护 分布式事务 课后练习等

SpringCloud微服务技术栈实战教程,涵盖springcloud微服务架构+Nacos配置中心+分布式服务等

SpringCloud及SpringCloudAlibaba是目前最流行的微服务技术栈。但大家学习起来的感受就是组件很多,不知道该如何应用。这套《微服务实战课》从一个单体项目入手,带领大家从服务拆分时机、服务拆分原则、拆分遇到的问题入手,结合实际项目讲解。带你体会从单体到微服务中碰到的各种问题,并利用SpringCloud和SpringCloudAlibaba中的组件解决这些问题。让你真正了解到微服务组件在项目中的具体应用场景。

在微服务远程调用的过程中,还存在几个问题需要解决。

首先是业务健壮性问题:

例如在之前的查询购物车列表业务中,购物车服务需要查询最新的商品信息,与购物车数据做对比,提醒用户。大家设想一下,如果商品服务查询时发生故障,查询购物车列表在调用商品服务时,是不是也会异常?从而导致购物车查询失败。但从业务角度来说,为了提升用户体验,即便是商品查询失败,购物车列表也应该正确展示出来,哪怕是不包含最新的商品信息。

还有级联失败问题:

还是查询购物车的业务,假如商品服务业务并发较高,占用过多Tomcat连接。可能会导致商品服务的所有接口响应时间增加,延迟变高,甚至是长时间阻塞直至查询失败。

此时查询购物车业务需要查询并等待商品查询结果,从而导致查询购物车列表业务的响应时间也变长,甚至也阻塞直至无法访问。而此时如果查询购物车的请求较多,可能导致购物车服务的Tomcat连接占用较多,所有接口的响应时间都会增加,整个服务性能很差, 甚至不可用。

依次类推,整个微服务群中与购物车服务、商品服务等有调用关系的服务可能都会出现问题,最终导致整个集群不可用。

这就是级联失败问题,或者叫雪崩问题。

还有跨服务的事务问题:

比如昨天讲到过的下单业务,下单的过程中需要调用多个微服务:

  • 商品服务:扣减库存
  • 订单服务:保存订单
  • 购物车服务:清理购物车

这些业务全部都是数据库的写操作,我们必须确保所有操作的同时成功或失败。但是这些操作在不同微服务,也就是不同的Tomcat,这样的情况如何确保事务特性呢?

这些问题都会在今天找到答案。

今天的内容会分成几部分:

  • 微服务保护
    • 服务保护方案
    • 请求限流
    • 隔离和熔断
  • 分布式事务
    • 初识分布式事务
    • Seata

通过今天的学习,你将能掌握下面的能力:

  • 知道雪崩问题产生原因及常见解决方案
  • 能使用Sentinel实现服务保护
  • 理解分布式事务产生的原因
  • 能使用Seata解决分布式事务问题
  • 理解AT模式基本原理

1.微服务保护

保证服务运行的健壮性,避免级联失败导致的雪崩问题,就属于微服务保护。这章我们就一起来学习一下微服务保护的常见方案以及对应的技术。

1.1.服务保护方案

微服务保护的方案有很多,比如:

  • 请求限流
  • 线程隔离
  • 服务熔断

这些方案或多或少都会导致服务的体验上略有下降,比如请求限流,降低了并发上限;线程隔离,降低了可用资源数量;服务熔断,降低了服务的完整度,部分服务变的不可用或弱可用。因此这些方案都属于服务降级的方案。但通过这些方案,服务的健壮性得到了提升,

接下来,我们就逐一了解这些方案的原理。

1.1.1.请求限流

服务故障最重要原因,就是并发太高!解决了这个问题,就能避免大部分故障。当然,接口的并发不是一直很高,而是突发的。因此请求限流,就是限制或控制接口访问的并发流量,避免服务因流量激增而出现故障。

请求限流往往会有一个限流器,数量高低起伏的并发请求曲线,经过限流器就变的非常平稳。这就像是水电站的大坝,起到蓄水的作用,可以通过开关控制水流出的大小,让下游水流始终维持在一个平稳的量。

1.1.2.线程隔离

当一个业务接口响应时间长,而且并发高时,就可能耗尽服务器的线程资源,导致服务内的其它接口收到影响。所以我们必须把这种影响降低,或者缩减影响的范围。线程隔离正是解决这个问题的好办法。

线程隔离的思想来自轮船的舱壁模式:

轮船的船舱会被隔板分割为N个相互隔离的密闭舱,假如轮船触礁进水,只有损坏的部分密闭舱会进水,而其他舱由于相互隔离,并不会进水。这样就把进水控制在部分船体,避免了整个船舱进水而沉没。

为了避免某个接口故障或压力过大导致整个服务不可用,我们可以限定每个接口可以使用的资源范围,也就是将其“隔离”起来。

如图所示,我们给查询购物车业务限定可用线程数量上限为20,这样即便查询购物车的请求因为查询商品服务而出现故障,也不会导致服务器的线程资源被耗尽,不会影响到其它接口。

1.1.3.服务熔断

线程隔离虽然避免了雪崩问题,但故障服务(商品服务)依然会拖慢购物车服务(服务调用方)的接口响应速度。而且商品查询的故障依然会导致查询购物车功能出现故障,购物车业务也变的不可用了。

所以,我们要做两件事情:

  • 编写服务降级逻辑:就是服务调用失败后的处理逻辑,根据业务场景,可以抛出异常,也可以返回友好提示或默认数据。
  • 异常统计和熔断:统计服务提供方的异常比例,当比例过高表明该接口会影响到其它服务,应该拒绝调用该接口,而是直接走降级逻辑。

1.2.Sentinel

微服务保护的技术有很多,但在目前国内使用较多的还是Sentinel,所以接下来我们学习Sentinel的使用。

1.2.1.介绍和安装

Sentinel是阿里巴巴开源的一款服务保护框架,目前已经加入SpringCloudAlibaba中。官方网站:

首页 | Sentinel

Sentinel 的使用可以分为两个部分:

  • 核心库(Jar包):不依赖任何框架/库,能够运行于 Java 8 及以上的版本的运行时环境,同时对 Dubbo / Spring Cloud 等框架也有较好的支持。在项目中引入依赖即可实现服务限流、隔离、熔断等功能。
  • 控制台(Dashboard):Dashboard 主要负责管理推送规则、监控、管理机器信息等。

为了方便监控微服务,我们先把Sentinel的控制台搭建出来。

1)下载jar包

下载地址:

Sentinel Release

也可以直接使用课前资料提供的版本:

2)运行

将jar包放在任意非中文、不包含特殊字符的目录下,重命名为sentinel-dashboard.jar

然后运行如下命令启动控制台:

java -Dserver.port=8090 -Dcsp.sentinel.dashboard.server=localhost:8090 -Dproject.name=sentinel-dashboard -jar sentinel-dashboard.jar

其它启动时可配置参数可参考官方文档:

Sentinel启动配置项

3)访问

访问http://localhost:8080页面,就可以看到sentinel的控制台了:

需要输入账号和密码,默认都是:sentinel

登录后,即可看到控制台,默认会监控sentinel-dashboard服务本身:

1.2.2.微服务整合

我们在cart-service模块中整合sentinel,连接sentinel-dashboard控制台,步骤如下:

1)引入sentinel依赖

<!--sentinel-->
<dependency><groupId>com.alibaba.cloud</groupId> <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

2)配置控制台

修改application.yaml文件,添加下面内容:

spring:cloud: sentinel:transport:dashboard: localhost:8090

3)访问cart-service的任意端点

重启cart-service,然后访问查询购物车接口,sentinel的客户端就会将服务访问的信息提交到sentinel-dashboard控制台。并展示出统计信息:

点击簇点链路菜单,会看到下面的页面:

所谓簇点链路,就是单机调用链路,是一次请求进入服务后经过的每一个被Sentinel监控的资源。默认情况下,Sentinel会监控SpringMVC的每一个Endpoint(接口)。

因此,我们看到/carts这个接口路径就是其中一个簇点,我们可以对其进行限流、熔断、隔离等保护措施。

不过,需要注意的是,我们的SpringMVC接口是按照Restful风格设计,因此购物车的查询、删除、修改等接口全部都是/carts路径:

默认情况下Sentinel会把路径作为簇点资源的名称,无法区分路径相同但请求方式不同的接口,查询、删除、修改等都被识别为一个簇点资源,这显然是不合适的。

所以我们可以选择打开Sentinel的请求方式前缀,把请求方式 + 请求路径作为簇点资源名:

首先,在cart-serviceapplication.yml中添加下面的配置:

spring:cloud:sentinel:transport:dashboard: localhost:8090http-method-specify: true # 开启请求方式前缀

然后,重启服务,通过页面访问购物车的相关接口,可以看到sentinel控制台的簇点链路发生了变化:

1.3.请求限流

在簇点链路后面点击流控按钮,即可对其做限流配置:

在弹出的菜单中这样填写:

这样就把查询购物车列表这个簇点资源的流量限制在了每秒6个,也就是最大QPS为6.

我们利用Jemeter做限流测试,我们每秒发出10个请求:

最终监控结果如下:

可以看出GET:/carts这个接口的通过QPS稳定在6附近,而拒绝的QPS在4附近,符合我们的预期。

1.4.线程隔离

限流可以降低服务器压力,尽量减少因并发流量引起的服务故障的概率,但并不能完全避免服务故障。一旦某个服务出现故障,我们必须隔离对这个服务的调用,避免发生雪崩。

比如,查询购物车的时候需要查询商品,为了避免因商品服务出现故障导致购物车服务级联失败,我们可以把购物车业务中查询商品的部分隔离起来,限制可用的线程资源:

这样,即便商品服务出现故障,最多导致查询购物车业务故障,并且可用的线程资源也被限定在一定范围,不会导致整个购物车服务崩溃。

所以,我们要对查询商品的FeignClient接口做线程隔离。

1.4.1.OpenFeign整合Sentinel

修改cart-service模块的application.yml文件,开启Feign的sentinel功能:

feign:sentinel:enabled: true # 开启feign对sentinel的支持

然后重启cart-service服务,可以看到查询商品的FeignClient自动变成了一个簇点资源:

1.4.2.配置线程隔离

接下来,点击查询商品的FeignClient对应的簇点资源后面的流控按钮:

在弹出的表单中填写下面内容:

注意,这里勾选的是并发线程数限制,也就是说这个查询功能最多使用5个线程,而不是5QPS。如果查询商品的接口每秒处理2个请求,则5个线程的实际QPS在10左右,而超出的请求自然会被拒绝。

我们利用Jemeter测试,每秒发送100个请求:

最终测试结果如下:

进入查询购物车的请求每秒大概在100,而在查询商品时却只剩下每秒10左右,符合我们的预期。

此时如果我们通过页面访问购物车的其它接口,例如添加购物车、修改购物车商品数量,发现不受影响:

响应时间非常短,这就证明线程隔离起到了作用,尽管查询购物车这个接口并发很高,但是它能使用的线程资源被限制了,因此不会影响到其它接口。

1.5.服务熔断

在上节课,我们利用线程隔离对查询购物车业务进行隔离,保护了购物车服务的其它接口。由于查询商品的功能耗时较高(我们模拟了500毫秒延时),再加上线程隔离限定了线程数为5,导致接口吞吐能力有限,最终QPS只有10左右。这就导致了几个问题:

第一,超出的QPS上限的请求就只能抛出异常,从而导致购物车的查询失败。但从业务角度来说,即便没有查询到最新的商品信息,购物车也应该展示给用户,用户体验更好。也就是给查询失败设置一个降级处理逻辑。

第二,由于查询商品的延迟较高(模拟的500ms),从而导致查询购物车的响应时间也变的很长。这样不仅拖慢了购物车服务,消耗了购物车服务的更多资源,而且用户体验也很差。对于商品服务这种不太健康的接口,我们应该直接停止调用,直接走降级逻辑,避免影响到当前服务。也就是将商品查询接口熔断

1.5.1.编写降级逻辑

触发限流或熔断后的请求不一定要直接报错,也可以返回一些默认数据或者友好提示,用户体验会更好。

给FeignClient编写失败后的降级逻辑有两种方式:

  • 方式一:FallbackClass,无法对远程调用的异常做处理
  • 方式二:FallbackFactory,可以对远程调用的异常做处理,我们一般选择这种方式。

这里我们演示方式二的失败降级处理。

步骤一:在hm-api模块中给ItemClient定义降级处理类,实现FallbackFactory

代码如下:

package com.hmall.api.client.fallback;import com.hmall.api.client.ItemClient;
import com.hmall.api.dto.ItemDTO;
import com.hmall.api.dto.OrderDetailDTO;
import com.hmall.common.exception.BizIllegalException;
import com.hmall.common.utils.CollUtils;
import lombok.extern.slf4j.Slf4j;
import org.springframework.cloud.openfeign.FallbackFactory;import java.util.Collection;
import java.util.List;@Slf4j
public class ItemClientFallback implements FallbackFactory<ItemClient> {@Overridepublic ItemClient create(Throwable cause) {return new ItemClient() {@Overridepublic List<ItemDTO> queryItemByIds(Collection<Long> ids) {log.error("远程调用ItemClient#queryItemByIds方法出现异常,参数:{}", ids, cause);// 查询购物车允许失败,查询失败,返回空集合return CollUtils.emptyList();}@Overridepublic void deductStock(List<OrderDetailDTO> items) {// 库存扣减业务需要触发事务回滚,查询失败,抛出异常throw new BizIllegalException(cause);}};}
}

步骤二:在hm-api模块中的com.hmall.api.config.DefaultFeignConfig类中将ItemClientFallback注册为一个Bean

步骤三:在hm-api模块中的ItemClient接口中使用ItemClientFallbackFactory

重启后,再次测试,发现被限流的请求不再报错,走了降级逻辑:

但是未被限流的请求延时依然很高:

导致最终的平局响应时间较长。

1.5.2.服务熔断

查询商品的RT较高(模拟的500ms),从而导致查询购物车的RT也变的很长。这样不仅拖慢了购物车服务,消耗了购物车服务的更多资源,而且用户体验也很差。

对于商品服务这种不太健康的接口,我们应该停止调用,直接走降级逻辑,避免影响到当前服务。也就是将商品查询接口熔断。当商品服务接口恢复正常后,再允许调用。这其实就是断路器的工作模式了。

Sentinel中的断路器不仅可以统计某个接口的慢请求比例,还可以统计异常请求比例。当这些比例超出阈值时,就会熔断该接口,即拦截访问该接口的一切请求,降级处理;当该接口恢复正常时,再放行对于该接口的请求。

断路器的工作状态切换有一个状态机来控制:

状态机包括三个状态:

  • closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
  • open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态持续一段时间后会进入half-open状态
  • half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
    • 请求成功:则切换到closed状态
    • 请求失败:则切换到open状态

我们可以在控制台通过点击簇点后的**熔断**按钮来配置熔断策略:

在弹出的表格中这样填写:

这种是按照慢调用比例来做熔断,上述配置的含义是:

  • RT超过200毫秒的请求调用就是慢调用
  • 统计最近1000ms内的最少5次请求,如果慢调用比例不低于0.5,则触发熔断
  • 熔断持续时长20s

配置完成后,再次利用Jemeter测试,可以发现:

在一开始一段时间是允许访问的,后来触发熔断后,查询商品服务的接口通过QPS直接为0,所有请求都被熔断了。而查询购物车的本身并没有受到影响。

此时整个购物车查询服务的平均RT影响不大:

2.分布式事务

首先我们看看项目中的下单业务整体流程:

由于订单、购物车、商品分别在三个不同的微服务,而每个微服务都有自己独立的数据库,因此下单过程中就会跨多个数据库完成业务。而每个微服务都会执行自己的本地事务:

  • 交易服务:下单事务
  • 购物车服务:清理购物车事务
  • 库存服务:扣减库存事务

整个业务中,各个本地事务是有关联的。因此每个微服务的本地事务,也可以称为分支事务。多个有关联的分支事务一起就组成了全局事务。我们必须保证整个全局事务同时成功或失败。

我们知道每一个分支事务就是传统的单体事务,都可以满足ACID特性,但全局事务跨越多个服务、多个数据库,是否还能满足呢?

我们来做一个测试,先进入购物车页面:

目前有4个购物车,然结算下单,进入订单结算页面:

然后将购物车中某个商品的库存修改为0

然后,提交订单,最终因库存不足导致下单失败:

然后我们去查看购物车列表,发现购物车数据依然被清空了,并未回滚:

事务并未遵循ACID的原则,归其原因就是参与事务的多个子业务在不同的微服务,跨越了不同的数据库。虽然每个单独的业务都能在本地遵循ACID,但是它们互相之间没有感知,不知道有人失败了,无法保证最终结果的统一,也就无法遵循ACID的事务特性了。

这就是分布式事务问题,出现以下情况之一就可能产生分布式事务问题:

  • 业务跨多个服务实现
  • 业务跨多个数据源实现

接下来这一章我们就一起来研究下如何解决分布式事务问题。

2.1.认识Seata

解决分布式事务的方案有很多,但实现起来都比较复杂,因此我们一般会使用开源的框架来解决分布式事务问题。在众多的开源分布式事务框架中,功能最完善、使用最多的就是阿里巴巴在2019年开源的Seata了。

Seata 是什么

其实分布式事务产生的一个重要原因,就是参与事务的多个分支事务互相无感知,不知道彼此的执行状态。因此解决分布式事务的思想非常简单:

就是找一个统一的事务协调者,与多个分支事务通信,检测每个分支事务的执行状态,保证全局事务下的每一个分支事务同时成功或失败即可。大多数的分布式事务框架都是基于这个理论来实现的。

Seata也不例外,在Seata的事务管理中有三个重要的角色:

  • TC (Transaction Coordinator) - **事务协调者:**维护全局和分支事务的状态,协调全局事务提交或回滚。
  • TM (Transaction Manager) - **事务管理器:**定义全局事务的范围、开始全局事务、提交或回滚全局事务。
  • RM (Resource Manager) - **资源管理器:**管理分支事务,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。

Seata的工作架构如图所示:

其中,TMRM可以理解为Seata的客户端部分,引入到参与事务的微服务依赖中即可。将来TMRM就会协助微服务,实现本地分支事务与TC之间交互,实现事务的提交或回滚。

TC服务则是事务协调中心,是一个独立的微服务,需要单独部署。

2.2.部署TC服务

2.2.1.准备数据库表

Seata支持多种存储模式,但考虑到持久化的需要,我们一般选择基于数据库存储。执行课前资料提供的《seata-tc.sql》,导入数据库表:

2.2.2.准备配置文件

课前资料准备了一个seata目录,其中包含了seata运行时所需要的配置文件:

其中包含中文注释,大家可以自行阅读。

我们将整个seata文件夹拷贝到虚拟机的/root目录:

2.2.3.Docker部署

在虚拟机的/root目录执行下面的命令:

docker run --name seata \
-p 8099:8099 \
-p 7099:7099 \
-e SEATA_IP=192.168.150.101 \
-v ./seata:/seata-server/resources \
--privileged=true \
--network hmall \
-d \
seataio/seata-server:1.5.2

如果镜像下载困难,也可以把课前资料提供的镜像上传到虚拟机并加载:

2.3.微服务集成Seata

参与分布式事务的每一个微服务都需要集成Seata,我们以trade-service为例。

2.3.1.引入依赖

为了方便各个微服务集成seata,我们需要把seata配置共享到nacos,因此trade-service模块不仅仅要引入seata依赖,还要引入nacos依赖:

<!--统一配置管理--><dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-nacos-config</artifactId></dependency><!--读取bootstrap文件--><dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-bootstrap</artifactId></dependency><!--seata--><dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-seata</artifactId></dependency><!--sentinel--><dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-sentinel</artifactId></dependency>

2.3.2.改造配置

首先在nacos上添加一个共享的seata配置,命名为shared-seata.yaml

内容如下:

seata:registry: # TC服务注册中心的配置,微服务根据这些信息去注册中心获取tc服务地址type: nacos # 注册中心类型 nacosnacos:server-addr: 192.168.150.101:8848 # nacos地址namespace: "" # namespace,默认为空group: DEFAULT_GROUP # 分组,默认是DEFAULT_GROUPapplication: seata-server # seata服务名称username: nacospassword: nacostx-service-group: hmall # 事务组名称service:vgroup-mapping: # 事务组与tc集群的映射关系hmall: "default"

然后,改造trade-service模块,添加bootstrap.yaml

内容如下:

spring:application:name: trade-service # 服务名称profiles:active: devcloud:nacos:server-addr: 192.168.150.101 # nacos地址config:file-extension: yaml # 文件后缀名shared-configs: # 共享配置- dataId: shared-jdbc.yaml # 共享mybatis配置- dataId: shared-log.yaml # 共享日志配置- dataId: shared-swagger.yaml # 共享日志配置- dataId: shared-seata.yaml # 共享seata配置

可以看到这里加载了共享的seata配置。

然后改造application.yaml文件,内容如下:

server:port: 8085
feign:okhttp:enabled: true # 开启OKHttp连接池支持sentinel:enabled: true # 开启Feign对Sentinel的整合
hm:swagger:title: 交易服务接口文档package: com.hmall.trade.controllerdb:database: hm-trade

参考上述办法分别改造hm-carthm-item两个微服务模块。

2.3.3.添加数据库表

seata的客户端在解决分布式事务的时候需要记录一些中间数据,保存在数据库中。因此我们要先准备一个这样的表。

将课前资料的seata-at.sql分别文件导入hm-trade、hm-cart、hm-item三个数据库中:

结果:

OK,至此为止,微服务整合的工作就完成了。可以参考上述方式对hm-itemhm-cart模块完成整合改造。

2.3.4.测试

接下来就是测试的分布式事务的时候了。

我们找到trade-service模块下的com.hmall.trade.service.impl.OrderServiceImpl类中的createOrder方法,也就是下单业务方法。

将其上的@Transactional注解改为Seata提供的@GlobalTransactional

@GlobalTransactional注解就是在标记事务的起点,将来TM就会基于这个方法判断全局事务范围,初始化全局事务。

我们重启trade-serviceitem-servicecart-service三个服务。再次测试,发现分布式事务的问题解决了!

那么,Seata是如何解决分布式事务的呢?

2.4.XA模式

Seata支持四种不同的分布式事务解决方案:

  • XA
  • TCC
  • AT
  • SAGA

这里我们以XA模式和AT模式来给大家讲解其实现原理。

XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA`` 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。

2.4.1.两阶段提交

A是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交。

正常情况:

异常情况:

一阶段:

  • 事务协调者通知每个事物参与者执行本地事务
  • 本地事务执行完成后报告事务执行状态给事务协调者,此时事务不提交,继续持有数据库锁

二阶段:

  • 事务协调者基于一阶段的报告来判断下一步操作
  • 如果一阶段都成功,则通知所有事务参与者,提交事务
  • 如果一阶段任意一个参与者失败,则通知所有事务参与者回滚事务

2.4.2.Seata的XA模型

Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:

RM一阶段的工作:

  1. 注册分支事务到TC
  2. 执行分支业务sql但不提交
  3. 报告执行状态到TC

TC二阶段的工作:

  1. TC检测各分支事务执行状态
  2. 如果都成功,通知所有RM提交事务
  3. 如果有失败,通知所有RM回滚事务

RM二阶段的工作:

  • 接收TC指令,提交或回滚事务

2.4.3.优缺点

XA模式的优点是什么?

  • 事务的强一致性,满足ACID原则
  • 常用数据库都支持,实现简单,并且没有代码侵入

XA模式的缺点是什么?

  • 因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差
  • 依赖关系型数据库实现事务

2.5.AT模式

AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷。

2.5.1.Seata的AT模型

基本流程图:

阶段一RM的工作:

  • 注册分支事务
  • 记录undo-log(数据快照)
  • 执行业务sql并提交
  • 报告事务状态

阶段二提交时RM的工作:

  • 删除undo-log即可

阶段二回滚时RM的工作:

  • 根据undo-log恢复数据到更新前

2.5.2.流程梳理

我们用一个真实的业务来梳理下AT模式的原理。

比如,现在又一个数据库表,记录用户余额:

id

money

1

100

其中一个分支业务要执行的SQL为:

 update tb_account set money = money - 10 where id = 1

AT模式下,当前分支事务执行流程如下:

一阶段

  1. TM发起并注册全局事务到TC
  2. TM调用分支事务
  3. 分支事务准备执行业务SQL
  4. RM拦截业务SQL,根据where条件查询原始数据,形成快照。
{"id": 1, "money": 100
}
  1. RM执行业务SQL,提交本地事务,释放数据库锁。此时 money = 90
  2. RM报告本地事务状态给TC

二阶段

  1. TM通知TC事务结束
  2. TC检查分支事务状态
    1. 如果都成功,则立即删除快照
    2. 如果有分支事务失败,需要回滚。读取快照数据({"id": 1, "money": 100}),将快照恢复到数据库。此时数据库再次恢复为100

流程图:

2.5.3.AT与XA的区别

简述AT模式与XA模式最大的区别是什么?

  • XA模式一阶段不提交事务,锁定资源;AT模式一阶段直接提交,不锁定资源。
  • XA模式依赖数据库机制实现回滚;AT模式利用数据快照实现数据回滚。
  • XA模式强一致;AT模式最终一致

可见,AT模式使用起来更加简单,无业务侵入,性能更好。因此企业90%的分布式事务都可以用AT模式来解决。

3.练习

3.1.编写降级逻辑

给黑马商城中现有的FeignClient都编写对应的降级逻辑,并且改造项目中每一个微服务,将OpenFeign与Sentinel整合。

3.2.解决分布式事务

除了下单业务以外,用户如果选择余额支付,前端会将请求发送到pay-service模块。而这个模块要做三件事情:

  • 直接从user-service模块调用接口,扣除余额付款
  • 更新本地(pay-service)交易流水表状态
  • 通知交易服务(trade-service)更新其中的业务订单状态

流程如图:

显然,这里也存在分布式事务问题。

对应的页面如下:

当我们提交订单成功后,进入支付页面,选择余额支付,输入密码后点击确认支付即可。

前端会提交支付请求,业务接口的入口在com.hmall.pay.controller.PayController类的tryPayOrderByBalance方法:

对应的service方法如下:

@Override
@Transactional
public void tryPayOrderByBalance(PayOrderDTO payOrderDTO) {// 1.查询支付单PayOrder po = getById(payOrderDTO.getId());// 2.判断状态if(!PayStatus.WAIT_BUYER_PAY.equalsValue(po.getStatus())){// 订单不是未支付,状态异常throw new BizIllegalException("交易已支付或关闭!");}// 3.尝试扣减余额userClient.deductMoney(payOrderDTO.getPw(), po.getAmount());// 4.修改支付单状态boolean success = markPayOrderSuccess(payOrderDTO.getId(), LocalDateTime.now());if (!success) {throw new BizIllegalException("交易已支付或关闭!");}// 5.修改订单状态tradeClient.markOrderPaySuccess(po.getBizOrderNo());
}

利用seata解决这里的分布式事务问题,并思考这个业务实现有没有什么值得改进的地方

非常感谢您阅读到这里,创作不易!如果这篇文章对您有帮助,希望能留下您的点赞👍 关注💖 收藏 💕评论💬感谢支持!!!

听说 三连能够给人 带来好运!更有可能年入百w,进入大厂,上岸

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/99467.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++项目:仿mudou库one thread one loop式并发服务器实现

目录 1.实现目标 2.HTTP服务器 3.Reactor模型 3.1分类 4.功能模块划分: 4.1SERVER模块: 4.2HTTP协议模块: 5.简单的秒级定时任务实现 5.1Linux提供给我们的定时器 5.2时间轮思想&#xff1a; 6.正则库的简单使用 7.通用类型any类型的实现 8.日志宏的实现 9.缓冲区…

深度学习 图像分割 PSPNet 论文复现(训练 测试 可视化)

Table of Contents 一、PSPNet 介绍1、原理阐述2、论文解释3、网络模型 二、部署实现1、PASCAL VOC 20122、模型训练3、度量指标4、结果分析5、图像测试 一、PSPNet 介绍 PSPNet(Pyramid Scene Parsing Network)来自于CVPR2017的一篇文章&#xff0c;中文翻译为金字塔场景解析…

YOLOv7暴力涨点:Gold-YOLO,遥遥领先,超越所有YOLO | 华为诺亚NeurIPS23

💡💡💡本文独家改进:提出了全新的信息聚集-分发(Gather-and-Distribute Mechanism)GD机制,Gold-YOLO,替换yolov7 head部分 实现暴力涨点 Gold-YOLO | 亲测在多个数据集能够实现大幅涨点,适用各个场景的涨点 收录: YOLOv7高阶自研专栏介绍: http://t.csdnim…

【产品经理】国内企业服务SAAS平台的生存与发展

SaaS在国外发展的比较成熟&#xff0c;甚至已经成为了主流&#xff0c;但在国内这几年才掀起热潮&#xff1b;企业服务SaaS平台在少部分行业发展较快&#xff0c;大部分行业在国内还处于起步、探索阶段&#xff1b;SaaS将如何再国内生存和发展&#xff1f; 在企业服务行业做了五…

钡铼BL124EC实现EtherCAT转Ethernet/IP的优势

钡铼技术的BL124EC是一款用于将EtherCAT从站转换为Ethernet/IP从站的网关设备。它是钡铼技术开发的高性能、可靠的工业自动化通信解决方案之一。 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; BL124EC网关可以应用于多种工业自动化场景&#xff0c;以下…

OSPF的7大状态和5大报文详讲

- Down OSPF的初始状态 - Init 初始化——我刚刚给别人发Hello报文 我们可以将OSPF邻居建立的过程理解为&#xff1a;我和你打招呼&#xff0c;你和我打招呼&#xff0c;然后咱俩成了邻居 比如&#xff1a; R1和R2要建立OSPF邻居 R1给R2发送了Hello报文&#xff0c;但是R1此时…

很烦的Node报错积累

目录 1. 卡在sill idealTree buildDeps2、Node Sass老是安装不上的问题3、unable to resolve dependency tree4、nvm相关命令5、设置淘宝镜像等基操5.1 镜像 5.2 npm清理缓存6、Browserslist: caniuse-lite is outdated loader 1. 卡在sill idealTree buildDeps 参考&#xf…

想要精通算法和SQL的成长之路 - 恢复二叉搜索树和有序链表转换二叉搜索树

想要精通算法和SQL的成长之路 - 恢复二叉搜索树和有序链表转换二叉搜索树 前言一. 恢复二叉搜索树二. 有序链表转换二叉搜索树 前言 想要精通算法和SQL的成长之路 - 系列导航 一. 恢复二叉搜索树 原题链接 首先&#xff0c;一个正常地二叉搜索树在中序遍历下&#xff0c;遍历…

antd的upload上传组件,上传成功后清除表单校验——基础积累

今天在写后台管理系统时&#xff0c;发现之前的一个bug&#xff0c;就是antd的upload上传组件&#xff0c;需要进行表单校验。 直接上代码&#xff1a; 1.html部分 <a-form-modelref"ruleForm":model"form":label-col"labelCol":wrapper-col…

通道剪枝channel pruning

1、相关定义 过参数化&#xff1a;主要是指在训练阶段&#xff0c;在数学上需要进行大量的微分求解&#xff0c;去捕捉数据中微小的变化信息&#xff0c;一旦完成迭代式的训练之后&#xff0c;网络模型在推理的时候就不需要这么多参数。剪枝算法&#xff1a;核心思想就是减少网…

基于DBC Signal Group生成Autosar SR接口(1)

文章目录 前言实现方法结构体在Simulink中的定义SignalGroup提取 总结 前言 在开发Autosar CAN通信模块时&#xff0c;对于Signal Group需要建立对应的Interface,其中的数据类型实际是一个结构体&#xff0c;包含Group中的Signal的数据类型定义。手动建立比较费时间&#xff0…

基于OpenCV设计的流媒体播放器(RTSP、RTMP)

一、前言 随着互联网的普及和发展,流媒体技术已成为日常生活中不可或缺的一部分。流媒体播放器作为流媒体技术的重要组成部分,其性能和功能直接影响到用户的观影体验。本文介绍使用OpenCV和Qt设计一款流媒体播放器,专门用于播放直播视频流,例如RTSP、RTMP。该播放器只播放…

项目进展(十)-解决ADS1285在调试时出现的问题

一、解决大坑 在项目进展&#xff08;九&#xff09;-完善ADS1285代码这边博客中&#xff0c;看似解决了问题&#xff0c;可以去读数据&#xff0c;但是其实是给自己挖大坑&#xff0c;这边博客就是来填坑的。   首先呢&#xff0c;上篇博客说的是用0x12指令来读取数据&#…

Transformer模型 | Python实现TransformerCPI模型(pytorch)

文章目录 效果一览文章概述程序设计参考资料效果一览 文章概述 Python实现TransformerCPI模型(tensorflow) Dependencies: python 3.6 pytorch >= 1.2.0 numpy RDkit = 2019.03.3.0 pandas Gensim >=3.4.0 程序设计 import torch import numpy as np import random …

WPF中, 如何将控件的触发事件绑定到ViewModel

在DataGrid 等控件中, 有很多这种带闪电符号的触发事件. 如果用传统的事件驱动, 则直接在后台中建立 一个private PropertyChanged(Sender s, EventAgars Args) 即可. 但是如果需要绑定到ViewModel的话? 应该怎么做? 带闪电符号的触发事件 实现viewModel绑定前端触发事件的…

day58:ARMday5,GPIO流水灯实验

汇编指令&#xff1a; .text .global _start _start: 1.设置GPIOE GPIOF寄存器的时钟使能 RCC_MP_AHB4ENSETR[5:4]->1 0x50000a28 LDR R0,0x50000a28 LDR R1,[R0] ORR R1,R1,#(0x3<<4) STR R1,[R0]2.设置PE10、PF10、PE8管脚为输出模式&#xff0c;GPIOE_MODER[21…

Jenkins+Allure+Pytest的持续集成

一、配置 allure 环境变量 1、下载 allure是一个命令行工具&#xff0c;可以去 github 下载最新版&#xff1a;https://github.com/allure-framework/allure2/releases 2、解压到本地 3、配置环境变量 复制路径如&#xff1a;F:\allure-2.13.7\bin 环境变量、Path、添加 F:\a…

全栈开发笔记1:首个项目的收获

本文为编程导航实战项目学习笔记。 文章目录 7.跨域问题解决 2023.10.26.项目部署 2023.10.15.统一处理返回值 2023.10.14.开发注册和用户管理 2023.09303.开发登陆注册接口 2023.09.172.数据库设计1.前后端初始化 2023.9.16 7.跨域问题解决 2023.10.2 三种方式&#xff1a; …

OCR让点读笔如虎添翼

点读笔是一种智能学习工具&#xff0c;它可以通过识别文字来提供相应的语音或图像反馈。在实现文字识别功能时&#xff0c;点读笔通常会借助OCR&#xff08;Optical Character Recognition&#xff0c;光学字符识别&#xff09;技术。下面将详细介绍点读笔如何利用OCR技术实现文…

【Spring Cloud系统】- Zookeer特性与使用场景

【Spring Cloud系统】- Zookeer特性与使用场景 一、概述 Zookeeper是一个分布式服务框架&#xff0c;是Apache Hadoop的一个子项目&#xff0c;它主要是用来解决分布式应用中经常遇到的一些数据管理问题。如&#xff1a;统一命名服务、状态同步服务、集群管理、分布式应用配置…