分类预测 | MATLAB实现KOA-CNN-BiLSTM开普勒算法优化卷积双向长短期记忆神经网络数据分类预测

分类预测 | MATLAB实现KOA-CNN-BiLSTM开普勒算法优化卷积双向长短期记忆神经网络数据分类预测

目录

    • 分类预测 | MATLAB实现KOA-CNN-BiLSTM开普勒算法优化卷积双向长短期记忆神经网络数据分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.MATLAB实现KOA-CNN-BiLSTM开普勒算法优化卷积双向长短期记忆神经网络数据分类预测,多特征输入模型,运行环境Matlab2020b及以上;
2.基于开普勒算法(KOA)优化卷积双向长短期记忆神经网络(CNN-BiLSTM)分类预测。
2023年新算法,KOA-CNN-BiLSTM开普勒优化卷积双向长短期记忆神经网络的数据分类预测,MATLAB程序,多变量特征输入,优化了学习率、卷积核大小及隐藏层单元个数等,方便增加维度优化自它参数。
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代图,混淆矩阵图。
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
5.输出指标包括优化参数、精确度、召回率、精确率、F1分数。

程序设计

  • 完整程序和数据获取方式,私信博主回复MATLAB实现KOA-CNN-BiLSTM开普勒算法优化卷积双向长短期记忆神经网络数据分类预测
[Order] = sort(PL_Fit);  %% 对当前种群中的解的适应度值进行排序%% 函数评估t时的最差适应度值worstFitness = Order(SearchAgents_no);                  %% Eq.(11)M = M0 * (exp(-lambda * (t / Tmax)));                   %% Eq.(12)%% 计算表示太阳与第i个解之间的欧几里得距离Rfor i = 1:SearchAgents_noR(i) = 0;for j = 1:dimR(i) = R(i) + (Sun_Pos(j) - Positions(i, j))^2;   %% Eq.(7)endR(i) = sqrt(R(i));end%% 太阳和对象i在时间t的质量计算如下:for i = 1:SearchAgents_nosum = 0;for k = 1:SearchAgents_nosum = sum + (PL_Fit(k) - worstFitness);endMS(i) = rand * (Sun_Score - worstFitness) / (sum);   %% Eq.(8)m(i) = (PL_Fit(i) - worstFitness) / (sum);           %% Eq.(9)end%%2步:定义引力(F)% 计算太阳和第i个行星的引力,根据普遍的引力定律:for i = 1:SearchAgents_noRnorm(i) = (R(i) - min(R)) / (max(R) - min(R));      %% 归一化的R(Eq.(24)MSnorm(i) = (MS(i) - min(MS)) / (max(MS) - min(MS)); %% 归一化的MSMnorm(i) = (m(i) - min(m)) / (max(m) - min(m));      %% 归一化的mFg(i) = orbital(i) * M * ((MSnorm(i) * Mnorm(i)) / (Rnorm(i) * Rnorm(i) + eps)) + (rand); %% Eq.(6)end
% a1表示第i个解在时间t的椭圆轨道的半长轴,
for i = 1:SearchAgents_noa1(i) = rand * (T(i)^2 * (M * (MS(i) + m(i)) / (4 * pi * pi)))^(1/3); %% Eq.(23)
endfor i = 1:SearchAgents_no
% a2是逐渐从-1-2的循环控制参数
a2 = -1 - 1 * (rem(t, Tmax / Tc) / (Tmax / Tc)); %% Eq.(29)% ξ是从1-2的线性减少因子
n = (a2 - 1) * rand + 1;    %% Eq.(28)
a = randi(SearchAgents_no); %% 随机选择的解的索引
b = randi(SearchAgents_no); %% 随机选择的解的索引
rd = rand(1, dim);          %% 按照正态分布生成的向量
r = rand;                   %% r1是[0,1]范围内的随机数%% 随机分配的二进制向量
U1 = rd < r;                %% Eq.(21)
O_P = Positions(i, :);      %% 存储第i个解的当前位置%%6步:更新与太阳的距离(第345在后面)
if rand < rand% h是一个自适应因子,用于控制时间t时太阳与当前行星之间的距离h = (1 / (exp(n * randn))); %% Eq.(27)% 基于三个解的平均向量:当前解、迄今为止的最优解和随机选择的解Xm = (Positions(b, :) + Sun_Pos + Positions(i, :)) / 3.0;Positions(i, :) = Positions(i, :) .* U1 + (Xm + h .* (Xm - Positions(a, :))) .* (1 - U1); %% Eq.(26)
else

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/98960.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

剑指offer——JZ68 二叉搜索树的最近公共祖先 解题思路与具体代码【C++】

一、题目描述与要求 二叉搜索树的最近公共祖先_牛客题霸_牛客网 (nowcoder.com) 题目描述 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。 1.对于该题的最近的公共祖先定义:对于有根树T的两个节点p、q&#xff0c;最近公共祖先LCA(T,p,q)表示一个节点x&#…

你知道AI智能知识库最大的用处在哪里吗?

在当今信息爆炸的时代&#xff0c;获取准确、及时的知识变得至关重要&#xff0c;而AI智能知识库的出现正好可以很好地解决这些问题。AI智能知识库的最大用处是在于帮助人们快速、高效地获取所需的知识和信息。它不仅可以减少人们在查找和筛选信息上的时间和精力投入&#xff0…

rust组织结构

一 、crate crate称为箱。 crate有两种形式&#xff1a;二进制箱(binary crate)和库箱(library crate)。 二进制箱必须有一个 main 函数&#xff0c;可以编译为可执行程序。 库箱并没有 main 函数&#xff0c;它们也不会编译为可执行程序&#xff0c;它们只是提供一些函数供其…

Arm64体系架构-MPIDR_EL1寄存器

背景 在Arm64多核处理器中, 各核间的关系可能不同. 比如1个16 core的cpu, 每4个core划分为1个cluster,共享L2 cache. 当我们需要从core 0将任务调度出来时,如果优先选择core 1~3, 那么性能明显时优于其他core的. 那么操作系统怎么知道core之间这样的拓扑信息呢? Arm提供了MPID…

Selenium+Phantomjs动态获取CSDN下载资源信息和评论

源代码 # codingutf-8 from selenium import webdriver from selenium.webdriver.common.keys import Keys import selenium.webdriver.support.ui as ui from selenium.webdriver.common.action_chains import ActionChains import time import re…

分享好用的Cloudflare测速文件

引言 有时候我们想测试一下自己的带宽&#xff0c;或者梯子的速度。又或者我们想看看我们服务器的速度到底有多快&#xff1f;那么就需要一个大文件来支撑我们进行这样的测试。 而这样的测速文件需要有两个特性&#xff1a; 不受速率限制&#xff0c;也就是说能把你的带宽拉…

登录系统的时候账号和密码加密传输

1、登录系统的时候账号和密码加密传输&#xff0c;前端解密&#xff0c;后端解密 2、前端点击登录按钮的执行方法 function loginSubmit() {//先把账号的属性设置为password&#xff0c;这样点击登录按钮&#xff0c;看到的就是加密后的账号$("input[nameusername]"…

FPGA设计时序约束三、设置时钟组set_clock_groups

目录 一、背景 二、时钟间关系 2.1 时钟关系分类 2.2 时钟关系查看 三、异步时钟组 3.1 优先级 3.2 使用格式 3.3 asynchronous和exclusive 3.4 结果示例 四、参考资料 一、背景 Vivado中时序分析工具默认会分析设计中所有时钟相关的时序路径&#xff0c;除非时序约束…

Java包装类、装箱和拆箱

在 java 的设计中提倡一种思想&#xff0c;即一切皆对象。但是从数据类型的划分中&#xff0c;我们知道 Java 中的数据类型分为基本数据类型和引用数据类型&#xff0c;但是基本数据类型怎么能够称为对象呢&#xff1f;于是 Java 为每种基本数据类型分别设计了对应的类&#xf…

引导滤波融合matlab

引导滤波&#xff08;Guided Filter&#xff09;是一种用于图像增强和融合的技术&#xff0c;它可以用于将一幅图像的细节信息&#xff08;引导图像&#xff09;融合到另一幅图像&#xff08;目标图像&#xff09;中。在MATLAB中&#xff0c;你可以使用以下步骤来执行引导滤波融…

Games104现代游戏引擎笔记 基础ai

游戏AI navigation(导航系统) 地图的表达形式&#xff0c; 寻路&#xff0c;路径优化 Map representation&#xff1a; 1.可行走区域&#xff08;物理碰撞&#xff0c;跳跃距离&#xff0c;攀爬高度&#xff09; 2.表达形式&#xff1a;waypoint networks(路点网络图)&#…

交互式ICP

以下程序演示如何编写交互式ICP查看器。该程序将加载点云并对其进行刚性变换。之后&#xff0c;使用ICP算法将变换后的点云与原来的点云对齐。每次用户按下“空格”&#xff0c;进行ICP迭代&#xff0c;刷新可视化界面。 代码实现 资源准备 monkey.ply #include <string&…

I/O多路复用【Linux/网络】(C++实现select、poll和epoll服务器)

阅读前导&#xff1a; “I/O 多路复用”处于知识树中网络和操作系统的最后&#xff0c;因此本文默认读者有计算机网络和操作系统的基础。 1. 引入&#xff1a;C10K 问题 c10k 问题是指如何让一个服务器同时处理超过 10000 个客户端的连接&#xff0c;这是一个网络编程中的经…

STM32+USB3300复位枚举异常的问题

关键字&#xff1a;STM32F4&#xff0c;STM32H7&#xff0c;USB3300&#xff0c;USBHS&#xff0c;Reset复位 F4和H7用的都是DWC2的USBIP&#xff0c;我的板子上3300单片机工作的很好&#xff0c;插入枚举一切正常&#xff0c;但是设备收到上位机的复位命令后&#xff0c;单片…

ubuntu安装ssh

安装 OpenSSH 服务器&#xff08;如果尚未安装&#xff09;&#xff1a; apt-get update && apt-get upgrade -y sudo apt-get install -y openssh-server 检查 SSH 服务是否正在运行&#xff1a; sudo service ssh status 如果 SSH 服务未运行&#xff0c;请通过以…

Redis之主从复制,哨兵模式,集群

Redis之主从复制&#xff0c;哨兵模式&#xff0c;集群 1、主从复制1.1主从复制概述1.2Redis主从复制作用1.3Redis主从复制流程1.4部署Redis 主从复制 2、哨兵模式2.1哨兵模式原理2.2哨兵模式的作用2.3哨兵模式的结构2.4故障转移机制2.5搭建Redis 哨兵模式 3、Redis集群模式3.1…

Deep learning of free boundary and Stefan problems论文阅读复现

Deep learning of free boundary and Stefan problems论文阅读复现 摘要1. 一维一相Stefan问题1.1 Direct Stefan problem1.2 Inverse Type I1.3 Inverse Type II 2. 一维二相Stefan问题2.1 Direct Stefan problem2.2 Inverse Type I2.3 Inverse Type II 3. 二维一相Stefan问题…

数据结构 | (四) Queue

队列 &#xff1a;只允许在一端进行插入数据操作&#xff0c;在另一端进行删除数据操作的特殊线性表&#xff0c;队列具有先进先出 FIFO(First In First Out) 入队列&#xff1a;进行插入操作的一端称为 队尾&#xff08; Tail/Rear &#xff09; 出队列&#xff1a;进行删除操…

如何在mac a1系统下将mysql加入环境变量

mac系统若使用二进制软件包直接安装&#xff0c;默认路径为/usr/local/mysql 故而需要将/usr/local/mysql/bin加入到环境变量中即可&#xff0c;具体操作过程如下&#xff1a; 打开终端open -e .zprofile回车在TextEdit中追加如下内容&#xff0c;并保存 PATH"/usr/loc…

代码随想录 单调栈part2

503. 下一个更大元素 II 给定一个循环数组 nums &#xff08; nums[nums.length - 1] 的下一个元素是 nums[0] &#xff09;&#xff0c;返回 nums 中每个元素的 下一个更大元素 。 数字 x 的 下一个更大的元素 是按数组遍历顺序&#xff0c;这个数字之后的第一个比它更大的数…