CMIP6数据处理及在气候变化、水文、生态等领域中的实践技术

全球气候模型(Global Climate Model, GCM),亦称全球环流模型或全球大气模型,是一种数值模型,被广泛用于模拟地球的气候系统。GCM利用一系列的数学公式来描绘气候系统的各个主要组成部分,包括大气、海洋、冻土以及地表和海洋表面的生物地理过程。GCM的空间和时间精度可以根据需要进行调整。这些模型为我们提供了理解气候系统运行机制的途径,为预测气候变化趋势、评估气候变化对人类社会和生态系统的影响以及制定应对气候变化的策略提供了关键工具。

为了进一步理解气候变化,世界气候研究计划(World Climate Research Programme, WCRP)发起了气候模型比较计划(Climate Model Intercomparison Project,CMIP)。CMIP的主要目标是收集和比较各种全球气候模型的模拟结果,以理解和预测过去、现在和未来的气候变化。

CMIP6数据被广泛应用于全球和地区的气候变化研究、极端天气和气候事件研究、气候变化影响和风险评估、气候变化的不确定性研究、气候反馈和敏感性研究以及气候政策和决策支持等多个领域。这些数据为我们理解和预测气候变化,评估气候变化的影响和风险,以及制定有效的气候政策和决策提供了关键的信息和工具。

【内容简介】:

专题一、CMIP6中的模式比较计划

1.1 GCM介绍

全球气候模型(Global Climate Model, GCM),也被称为全球环流模型或全球大气模型,是一种用于模拟地球的气候系统的数值模型。这种模型使用一系列的数学公式来描述气候系统的主要组成部分,包括大气、海洋、冰冻土壤以及地表和海洋表面的生物地理过程。GCM在空间和时间上的精度可以根据需求进行调整,通常的分辨率可以从几百公里到几公里,时间步长可以从几分钟到几小时

1.2 CMIP介绍

CMIP,全称为气候模型比较计划(Climate Model Intercomparison Project),是由世界气候研究计划(World Climate Research Programme,WCRP)发起的一个国际合作项目。其目的是通过收集和比较各种全球气候模型(GCMs)的模拟结果,以理解过去的、现在的和未来的气候变化。

 1.3相关比较计划介绍

专题二、数据下载

2.1方法一:手动人工

利用官方网站

2.2方法二:自动

利用Python的命令行工具

2.3方法三:半自动购物车

利用官方网站

2.4 裁剪netCDF文件

基于QGIS和CDO实现对netCDF格式裁剪

2.5 处理日期非365天的GCM

以BCC为例处理

专题三、基础知识 

3.1 Python基础

Python 是一种高级的、解释型的编程语言,其语法简洁明了,适合快速开发。在大气科学中,Python 以其丰富的科学计算和数据分析库备受青睐。这些库如 Numpy,Scipy,Pandas 和 Xarray 等,为处理大气科学数据提供了强大的支持。

Numpy:Numpy 是 Python 中用于科学计算的核心库,提供了高性能的多维数组对象及相关工具。对于大气科学数据的处理,例如温度、压力、风速等通常都会使用到多维数组。Numpy 提供了丰富的函数库来处理这些数组,包括数学运算、逻辑运算、形状操作、排序、选择等操作。

Scipy:Scipy 是基于 Python 的开源软件,用于科学计算中的数值积分和微分方程数值求解,线性代数,优化,信号处理等。在大气科学中,例如对气温、气压等数据进行傅立叶分析,求解大气动力学中的偏微分方程等,都可以使用 Scipy 来实现。

Pandas:Pandas 是基于 Numpy 构建的,使数据清洗和分析工作变得更快更简单。Pandas 是专门为处理表格和混杂数据设计的,而 Numpy 更适合处理统一的数值数组数据。在大气科学中,例如对气象站的观测数据进行时间序列分析,处理混合类型的气象数据,以及对数据进行清洗、筛选和统计等操作,Pandas 都是非常有用的工具。

3.2 CDO基本操作

CDO(Climate Data Operator)是大气科学领域常用的一款气候和气象数据处理工具。它是一个功能强大的命令行工具,可以处理和分析格网和无格网数据,支持多种数据格式,包括netCDF、GRIB、SERVICE, EXTRA和IEG。

CDO提供了一套丰富的函数库,可以用来进行各种常见的数据操作,包括

基础操作:如选择、提取和修改变量、维度、属性等。

数值操作:如四则运算、统计运算、函数运算等。例如,可以计算数据的平均值、最大值、最小值、标准差等。

空间操作:如重新格网、插值、汇总、选择和提取地理区域等。

时间操作:如选择和提取时间周期、计算时间平均或累积等。

3.3 Xarray的基本操作

Xarray 是一个用于处理多维数组数据的 Python 库,它在 numpy 的基础上提供了一系列用于数据操作和分析的高级接口,并能很好地支持 netCDF 这类基于网络的自描述数据格式,因此在大气科学和气候科学中被广泛使用。

Xarray 的主要特点包括:

l 基于标签的数据操作:Xarray 使用维度名称而不是轴编号进行数据选择和操作,极大地增强了代码的可读性和可维护性。

l 自动对齐数据:在进行运算时,Xarray 可以自动对齐不同数据集的变量(variables)和坐标(coordinates)。

l 分组运算和数据透视:Xarray 支持类似于 pandas 的分组运算(group-by)和数据透视(pivot)功能。

l I/O操作:Xarray 对多种数据格式提供了非常好的支持,尤其是对 netCDF 数据的读取和写入。

专题四、单点降尺度

4.1 Delta方法

Delta方法(Delta Change Method),也称为增量方法或差值方法,是气候模型降尺度的一种简单而常用的方法。该方法假设气候变化的幅度在未来相对于历史期间将保持恒定。因此,对于某一具体的未来时段,可以通过计算过去和现在气候的差值(即 delta),并将其应用到未来的气候预测上,来预估未来的气候状态。该方法可以应用于温度和降水等气候变量的预测。

4.2统计订正

概率分布函数(Probability Density Function, PDF)的订正。这种方法的基本思想是:通过修改大尺度模型输出的PDF,使其更符合观测数据的PDF,从而获得更准确的小尺度气候变量。

4.3机器学习方法

降尺度是将粗尺度的全球气候模型(GCM)输出数据转换为地面更精细尺度的过程。机器学习方法因其在处理复杂模式识别和高维数据问题的强大能力,已经被成功应用于降尺度技术。在气候学领域,机器学习已被成功用于将粗尺度的气候模型输出(例如,温度和降水)与其他环境变量(例如,地形和土壤类型)关联,以获得更高分辨率的气候预测。

 实现步骤

  • 建立特征
  • 建立模型
  •  模型评估

4.4多算法集成方法

多算法的集成

贝叶斯模型平均 (Bayesian Model Averaging, BMA)

贝叶斯模型平均是一种统计方法,用于根据观察数据确定各种模型的后验概率。与选择一个最好的模型相反,贝叶斯模型平均考虑了所有可能的模型,然后根据每个模型的后验概率进行加权平均。

Python+pymc3实现

专题五、统计方法的区域降尺度

5.1 Delta方法

5.2 基于概率订正方法的

专题六、基于WRF模式的动力降尺度

动态降尺度通常使用更高分辨率的区域气候模型(RCM),这些模型在更大尺度的全球气候模型驱动下运行。其中,WRF(Weather Research and Forecasting)模型是目前使用最广泛的区域气候模型之一。

WRF模型是一个灵活的、大气环流模型,适合用于各种尺度的气候和气象研究。它的主要特点是具有高分辨率(可达到几公里),并且可以考虑到许多重要的地球物理过程,如云的形成、降水、陆面过程、海洋过程、边界层过程、辐射、化学过程等。

6.1制备CMIP6的WRF驱动数据

利用cdo工具对gcm的输出文件进行重新编码制备wrf的驱动数据

6.1.1针对压力坐标系的数据制备

6.1.2针对sigma坐标系GCM数据制备

6.1.3 WPS处理

6.2 WRF模式运行

6.3 模式的后处理

  • 提取变量
  • 变量的统计
  • 变量的可视化

专题七、典型应用案例-气候变化1

7.1针对风速进行降尺度

7.2针对短波辐射降尺度

专题八、典型应用案例-气候变化2

ECA极端气候指数计算

ECA (European Climate Assessment) 是欧洲的一个气候评估项目,其在全球范围内发布了一系列的极端气候事件指数。这些指数被广泛用于气候变化研究,特别是在研究极端天气和气候事件方面。

ECA 的极端气候指数主要包括以下几类:

温度指数:这些指数主要用于度量温度的极端情况,例如热日数(TX90p,年中最高气温超过90百分位数的天数)、冷日数(TN10p,年中最低气温低于10百分位数的天数)、热夜数(TN90p,年中最低气温超过90百分位数的天数)、冷夜数(TN10p,年中最低气温低于10百分位数的天数)等。

降水指数:这些指数主要用于度量降水的极端情况,例如最大连续5日降水量(RX5day)、大于或等于10mm的降水日数(R10mm)、大于或等于20mm的降水日数(R20mm)、降水强度(SDII)等。

这些指数对于理解和预测极端气候事件的影响非常重要,因为极端气候事件(如热浪、干旱、洪水等)往往比平均气候变化带来更大的影响。因此,对这些指数的研究有助于我们更好地理解和适应气候变化。

Consecutive dry days index

Consecutive frost days index per time period

Consecutive summer days index per time period

Consecutive wet days index per time period

 专题九、典型应用案例-生态领域

预估生长季开始和结束时间

1、建立气象数据与VIPPHEN遥感物候数据中生长季开始和结束

2、在未来气候情景下预估生长季长季开始、结束和长度

专题十、典型应用案例-水文、生态模式数据

  • SWAT数据制备
  • Biome-BGC数据

Biome-BGC是利用站点描述数据、气象数据和植被生理生态参数,模拟日尺度碳、水和氮通量的模型,其研究的空间尺度可以从点尺度扩展到陆地生态系统。案例中以单点模拟方式制备CMIP6的气象数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/98756.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java spring boot 一次调用多个请求

Java Spring Boot是一种基于Java编程语言的开发框架,它提供了一种快速构建高效、可伸缩和易于维护的企业级应用程序的方式。在实际的应用开发中,我们常常需要调用多个独立的请求来完成某个业务功能。然而,传统的同步方式一次只能调用一个请求…

STM32实战项目——WIFI远程开关灯

前言 其实WIFI开关灯在几个月前就想做了,但是对于没有云平台调试经验的我,一开始有些摸不着头脑,所以就搁置了。十一假期与老同学聊天时了解到他也在做一个远程开关灯的小项目,所以就重新开始了WIFI远程开关灯的小项目。 本文使用…

QA-LORA: QUANTIZATION-AWARE LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

本文是LLM系列文章,针对《QA-LORA: QUANTIZATION-AWARE LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS》的翻译。 Qa-lora:大型语言模型的量化感知低秩自适应 摘要1 引言2 相关工作3 提出的方法4 实验5 结论 摘要 近年来,大型语言模型(llm)得到了迅速…

设置Mysql数据库开启远程连接

1、在服务器端开启远程访问 进入mysql数据库,然后输入下面两个命令: grant all privileges on *.* to root% identified by password; flush privileges;第一个*是数据库,可以改成允许访问的数据库名称 第二个* 是数据库的表名称&#xff…

react框架与vue框架的区别

React和Vue都是前端开发中常用的框架,它们有一些不同的特性和优点。下面是它们的主要区别: 数据流和数据绑定:React是一种单向数据流的框架,而Vue则是双向数据绑定的框架。这意味着在React中,数据从组件的state属性流…

光引擎、光模块、光器件之间的关系和区别

最近小编有收到一些用户问“光引擎、光模块、光器件之间的关系和区别?”,众所周知光通信技术一直在不断演进,为满足不断增长的数据传输需求提供了强大的解决方案。而光通信系统中,光引擎、光模块和光器件是关键的组成部分&#xf…

selenium-webdriver-Chrome新驱动地址(Chrome115及以上版本)

Chrome115、Chrome116、Chrome117,在旧的链接并没有 新地址:https://googlechromelabs.github.io/chrome-for-testing/ 参考学习链接(我也是根据这个老师的链接学到的):https://www.cnblogs.com/wuxianfeng023/p/1765…

现代化战机之路:美国空军U-2侦察机基于Jenkins和k8s的CI/CD架构演进

▲ 点击上方"DevOps和k8s全栈技术"关注公众 华为北京研究所Q27大楼 随着技术的不断进步,军事领域也在积极采纳现代化工具来提高战备水平和效率。美国空军的U-2侦察机项目是一个鲜明的例子,它成功地借助Jenkins和Kubernetes(k8s&…

蓝牙技术|Matter或能改变中国智能家居市场,蓝牙技术将得到进一步应用

近年来,智能家居开放协议标准Matter(目前版本 1.1)由连接标准联盟发布,该联盟是一个由数百家公司组成的全球性机构,旨在提供与物联网 (IoT) 相关的标准。例如,Matter 用于允许 Amazon Alexa、Apple Home、G…

Maven 仓库

目录 本地仓库 中央仓库 远程仓库 Maven 依赖搜索顺序 Maven 阿里云(Aliyun)仓库 gradle 配置指南 在 Maven 的术语中,仓库是一个位置(place)。 Maven 仓库是项目中依赖的第三方库,这个库所在的位置叫做仓库。 在 Maven 中…

ARM_汇编流水灯

ARM_汇编流水灯 .text .global _start _start: 设置GPIOE寄存器的时钟使能ldr r0,0x50000A28ldr r1,[r0] 从r0为起始地址的4字节数据取出存入r1orr r1,r1,#(0x01<<4) 第4位设置为1 表示开启时钟使能orr r1,r1,#(0x01<<5) 第5位设置为1 表示开启时钟使能str r1…

产品安全—CC标准 ISO/IEC 15408:2022

文章目录 1. 变化2. Part1 简介和一般模型3. Part2 安全功能组件4. Part3 安全保障组件5. Part4 评估方法和活动规范框架6. Part5 预定义的安全要求包7. 总结 1. 变化 增加了两个部分&#xff1a;评估方法和活动规范框架 & 预定义的安全要求包 术语已经过审查和更新&#…

关于 打开虚拟机出现“...由VMware产品创建,但该产品与此版VMwareWorkstateion不兼容,因此无法使用” 的解决方法

文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/133678951 红胖子(红模仿)的博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬结…

Ubuntu 配置repo环境

一. 前言 下载Android源码的时候&#xff0c;自己的Ubuntu电脑需要初始化repo环境&#xff0c;这样子你就可以使用 repo init -u ssh: repo sync 等命令下载代码&#xff0c; 在工作中&#xff0c;一般公司的代码仓 git-repo 是固定的&#xff0c;首次就需要把repo的初…

校招时间紧很迷茫?校招机会怎么把握?没有项目简历怎么写?

校招分为秋招和春招&#xff0c;可以说校招是应届生零工作经验进入大厂的唯一机会。 现在十月份也是招聘的重要时间&#xff0c;很多公司的校招从十月份开始&#xff0c;现在秋招如果你没有好的offer&#xff0c;可以好好准备来年的春招&#xff0c;我们为学员准备了丰富的面试…

【1++的Linux】之文件(一)

&#x1f44d;作者主页&#xff1a;进击的1 &#x1f929; 专栏链接&#xff1a;【1的Linux】 文章目录 一&#xff0c;初识文件二&#xff0c;文件接口 一&#xff0c;初识文件 文件就是文件内容属性。因此对文件的操作无非就是对文件内容的操作和对文件属性的操作。 我们访问…

数据结构--》解锁数据结构中树与二叉树的奥秘(一)

数据结构中的树与二叉树&#xff0c;是在建立非线性数据结构方面极为重要的两个概念。它们不仅能够模拟出生活中各种实际问题的复杂关系&#xff0c;还常被用于实现搜索、排序、查找等算法&#xff0c;甚至成为一些大型软件和系统中的基础设施。 无论你是初学者还是进阶者&…

遥感数据与作物模型同化:遥感数据、PROSAIL模型、DSSAT模型、参数敏感性分析、数据同化算法、模型耦合

查看原文>>>遥感数据与作物模型同化实践技术应用 基于过程的作物生长模拟模型DSSAT是现代农业系统研究的有力工具&#xff0c;可以定量描述作物生长发育和产量形成过程及其与气候因子、土壤环境、品种类型和技术措施之间的关系&#xff0c;为不同条件下作物生长发育及…

【目标检测】大图包括标签切分,并转换成txt格式

前言 遥感图像比较大&#xff0c;通常需要切分成小块再进行训练&#xff0c;之前写过一篇关于大图裁切和拼接的文章【目标检测】图像裁剪/标签可视化/图像拼接处理脚本&#xff0c;不过当时的工作流是先将大图切分成小图&#xff0c;再在小图上进行标注&#xff0c;于是就不考…

CentOS 7 使用Docker

参考资料 Docker命令大全 黑马程序员docker实操教程 &#xff08;黑马讲的真的不错 容器与虚拟机 安装 yum install -y docker Docker服务命令 启动服务 systemctl start docker停止服务 systemctl stop docker重启服务 systemctl restart docker查看docker服务状态 syste…