分类预测 | MATLAB实现POA-CNN鹈鹕算法优化卷积神经网络多特征分类预测

分类预测 | MATLAB实现POA-CNN鹈鹕算法优化卷积神经网络多特征分类预测

目录

    • 分类预测 | MATLAB实现POA-CNN鹈鹕算法优化卷积神经网络多特征分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现POA-CNN鹈鹕算法优化卷积神经网络多特征分类预测,多特征输入模型,运行环境Matlab2018b及以上;
2.基于鹈鹕算法(POA)优化卷积神经网络(CNN)分类预测,优化参数为,学习率,批处理,正则化参数;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现POA-CNN鹈鹕算法优化卷积神经网络多特征分类预测
%%  优化算法参数设置
SearchAgents_no = 3;                  % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                              % 优化参数个数%% 建立模型
lgraph = [convolution2dLayer([1, 1], 32)  % 卷积核大小 3*1 生成32张特征图batchNormalizationLayer         % 批归一化层reluLayer                       % Relu激活层dropoutLayer(0.2)               % Dropout层fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层softmaxLayer("Name", "softmax")                                  % softmax激活层classificationLayer("Name", "classification")];                  % 分类层%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 10,...                 % 最大训练次数 'MiniBatchSize',best_hd, ...'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过800次训练后 学习率
%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/98575.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

.Net 对象生命周期由浅入深2

大家都知道.net程序创建对象后没法写代码销毁对象,它有它自己的处理机制,今天来大概说说它的原理,探讨下它是如何管理对象即管理内存的 在程序里使用new 关键字实例化一个对象 如果这个对象类型是引用类型则在堆上分配然后由GC管理 new 操作…

如何开发移动应用:iOS和Android的比较

如何开发移动应用:iOS和Android的比较 移动应用开发领域一直以来都备受关注,而iOS和Android作为两大主要的移动操作系统,各自拥有强大的生态系统和开发工具。在本文中,我们将比较iOS和Android移动应用开发的关键方面,…

C# OpenCvSharp 实现迷宫解密

效果 项目 代码 using OpenCvSharp; using System; using System.Drawing; using System.Windows.Forms;namespace OpenCvSharp_实现迷宫解密 {public partial class Form1 : Form{public Form1(){InitializeComponent();}private void Form1_Load(object sender, EventArgs e…

掌握 BERT:自然语言处理 (NLP) 从初级到高级的综合指南(1)

简介 BERT(来自 Transformers 的双向编码器表示)是 Google 开发的革命性自然语言处理 (NLP) 模型。它改变了语言理解任务的格局,使机器能够理解语言的上下文和细微差别。在本文[1]中,我们将带您踏上从 BERT 基础知识到高级概念的旅…

Jmeter常用参数化技巧总结!

说起接口测试,相信大家在工作中用的最多的还是Jmeter。 JMeter是一个100%的纯Java桌面应用,由Apache组织的开放源代码项目,它是功能和性能测试的工具。具有高可扩展性、支持Web(HTTP/HTTPS)、SOAP、FTP、JAVA 等多种协议。 在做…

【c#】线程Monitor.Wait和Monitor.Pulse使用

介绍 以一个简易版的数据库连接池的实现来说明一下 连接池的connection以队列来管理 getConnection的时候,如果队列中connection个数小于50,且暂时无可用的connection(个数为0或者peek看下头部需要先出那个元素还处于不可用状态)…

Dockerfile自定义容器

1、Dockerfile Dockerfile 是用于构建 Docker 镜像的文本文件,其中包含一系列的指令和配置,用于定义镜像的构建过程。通过 Dockerfile,你可以定义镜像的基础操作系统、依赖、环境设置、应用程序等信息,从而实现可复制、自动化的镜…

应用DeepSORT实现目标跟踪

在ByteTrack被提出之前,可以说DeepSORT是最好的目标跟踪算法之一。本文,我们就来应用这个算法实现目标跟踪。 DeepSORT的官方网址是https://github.com/nwojke/deep_sort。但在这里,我们不使用官方的代码,而使用第三方代码&#…

linux之date命令

date 命令用于 显示 或 设置系统的时间或日期。 格式:date [参数] [日期格式] 注意: date后面有一个空格,否则无法识别命令,shell对空格是很严格的。 1、Linux date命令参数 日期时间格式符号: %H  小时(以00-23来表示…

HRM人力资源管理系统源码

HRM人力资源管理系统源码 运行环境:PHP8.1或以上 MYSQL5.7或以上 php扩展要求 fileinfo imagemagick 功能介绍: 综合仪表板 它通过其综合仪表板提供了员工总数、工单和帐户余额的概览。 您可以轻松访问组织中的缺席者以及详细的公告和预定会议列…

股票杠杆交易平台排名:淘配网推荐的十大平台

在投资世界中,股票杠杆交易一直以其提供更高回报机会的吸引力而备受欢迎。随着市场的不断发展,出现了越来越多的股票杠杆交易平台。本文将为您介绍淘配网推荐的十大股票杠杆交易平台,并分析它们的特点。 富灯网 - 富灯网以其全面的杠杆产品和…

OpenCV C++ Look Up Table(查找表)

OpenCV C Look Up Table(查找表) 引言 在图像处理和计算机视觉中,查找表(Look Up Table, LUT)是一种非常高效和实用的方法,用于快速地映射或更改图像的颜色和像素值。LUT 能够极大地提高图像处理算法的执…

微信小程序:实现列表单选

效果 代码 wxml <view class"all"><view class"item_all" wx:for"{{info}}" wx:key"index"><view classposition {{item.checked?"checked_parameter":""}} data-id"{{item.employee_num}}…

20231008工作心得:sql

1.SQL语句里的if的嵌套使用 if(product A and brand_name B,C,if(product A and brand_name !B,D,product)) as product if&#xff08;A,B,C&#xff09;。SQL里if函数&#xff0c;如果条件A成立&#xff0c;就显示B的值&#xff0c;否则就显示C。 这个代码的意思的&#x…

一文读懂Base64

这几天在和第三方交互的时候&#xff0c;对方返回的数据是base64格式的数据&#xff0c;所以这两天又彻底捋了下Base64的来龙去脉。之前看过一篇文章说的非常好&#xff08;再找到给加上链接&#xff09;&#xff0c;我在这不详细说明了&#xff0c;只说转换过程。 还是使用中…

DiffusionDet:第一个用于物体检测的扩散模型(DiffusionDet: Diffusion Model for Object Detection)

提出了一种新的框架——DiffusionDet&#xff0c;它将目标检测定义为一个从有噪声的盒子到目标盒子的去噪扩散过程。在训练阶段&#xff0c;目标盒从真实值盒扩散到随机分布&#xff0c;模型学会了逆转这个噪声过程。 在推理中&#xff0c;该模型以渐进的方式将一组随机生成的框…

云计算:常用系统前端与后端框架

目录 一、理论 1.前端 2.后端 一、理论 1.前端 &#xff08;1&#xff09;JavaScript框架 JQuery.JS ZeptoJS(与jquery类似) SUI.Mobile Node.JS (服务端) angular.Js (模型&#xff0c;scope作用域&#xff0c;controller, 依赖注入&#xff0c;MVVM) :前端MVC . requir…

Uniapp 新手专用 抖音登录 获取用户头像、名称、openid、unionid、anonymous_openid、session_key

TC-dylogin 一定请选择 源码授权版 教程 第一步 将代码拷贝至您所需要的页面 该代码位置&#xff1a;pages/index.vue 第二步 修改appid和secret 第三步 获取appid和secret 获取appid和secret链接 注意事项 为了安全&#xff0c;我将默认的自己的appid和secret在云函数中删…

图片调色盘

图片预览 配置安装 Color-Thief 安装包使用文档 yarn add colorthief -S // npm install colorthief --save代码 <template><div class"img-thief"><div class"container"><div class"thief-item" v-for"(item, in…

【Spring】Spring MVC 程序开发

Spring MVC 程序开发 一. 什么是 Spring MVC1. MVC2. Spring、Spring Boot 与 Spring MVC 二. 创建 Spring MVC 项目1. 创建项目2. 用户和程序的映射3. 获取用户请求参数①. 获取单个参数②. 获取多个参数③. 传递对象④. 后端参数重命名&#xff08;后端参数映射&#xff09;R…