计算机竞赛 题目:基于深度学习的中文对话问答机器人

文章目录

  • 0 简介
  • 1 项目架构
  • 2 项目的主要过程
    • 2.1 数据清洗、预处理
    • 2.2 分桶
    • 2.3 训练
  • 3 项目的整体结构
  • 4 重要的API
    • 4.1 LSTM cells部分:
    • 4.2 损失函数:
    • 4.3 搭建seq2seq框架:
    • 4.4 测试部分:
    • 4.5 评价NLP测试效果:
    • 4.6 梯度截断,防止梯度爆炸
    • 4.7 模型保存
  • 5 重点和难点
    • 5.1 函数
    • 5.2 变量
  • 6 相关参数
  • 7 桶机制
    • 7.1 处理数据集
    • 7.2 词向量处理seq2seq
    • 7.3 处理问答及答案权重
    • 7.4 训练&保存模型
    • 7.5 载入模型&测试
  • 8 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的中文对话问答机器人

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 项目架构

整个项目分为 数据清洗 和 建立模型两个部分。

(1)主要定义了seq2seq这样一个模型。
首先是一个构造函数,在构造函数中定义了这个模型的参数。
以及构成seq2seq的基本单元的LSTM单元是怎么构建的。

(2)接着在把这个LSTM间单元构建好之后,加入模型的损失函数。
我们这边用的损失函数叫sampled_softmax_loss,这个实际上就是我们的采样损失。做softmax的时候,我们是从这个6000多维里边找512个出来做采样。
损失函数做训练的时候需要,测试的时候不需要。训练的时候,y值是one_hot向量

(3)然后再把你定义好的整个的w[512*6000]、b[6000多维],还有我们的这个cell本身,以及我们的这个损失函数一同代到我们这个seq2seq模型里边。然后呢,这样的话就构成了我们这样一个seq2seq模型。
函数是tf.contrib.legacy_seq2seq.embedding_attention_seq2seq()

(4)最后再将我们传入的实参,也就是三个序列,经过这个桶的筛选。然后放到这个模型去训练啊,那么这个模型就会被训练好。到后面,我们可以把我们这个模型保存在model里面去。模型参数195M。做桶的目的就是节约计算资源。

2 项目的主要过程

前提是一问一答,情景对话,不是多轮对话(比较难,但是热门领域)

整个框架第一步:做语料

先拿到一个文件,命名为.conv(只要不命名那几个特殊的,word等)。输入目录是db,输出目录是bucket_dbs,不存在则新建目录。

测试的时候,先在控制台输入一句话,然后将这句话通过正反向字典Ids化,然后去桶里面找对应的回答的每一个字,然后将输出通过反向字典转化为汉字。

2.1 数据清洗、预处理

读取整个语料库,去掉E、M和空格,还原成原始文本。创建conversion.db,conversion表,两个字段。每取完1000组对话,插入依次数据库,批量提交,通过cursor.commit.

在这里插入图片描述

2.2 分桶

从总的conversion.db中分桶,指定输入目录db, 输出目录bucket_dbs.

检测文字有效性,循环遍历,依次记录问题答案,每积累到1000次,就写入数据库。

        for ask, answer in tqdm(ret, total=total):if is_valid(ask) and is_valid(answer):for i in range(len(buckets)):encoder_size, decoder_size = buckets[i]if len(ask) <= encoder_size and len(answer) < decoder_size:word_count.update(list(ask))word_count.update(list(answer))wait_insert.append((encoder_size, decoder_size, ask, answer))if len(wait_insert) > 10000000:wait_insert = _insert(wait_insert)break

将字典维度6865未,投影到100维,也就是每个字是由100维的向量组成的。后面的隐藏层的神经元的个数是512,也就是维度。

句子长度超过桶长,就截断或直接丢弃。

四个桶是在read_bucket_dbs()读取的方法中创建的,读桶文件的时候,实例化四个桶对象。

2.3 训练

先读取json字典,加上pad等四个标记。

lstm有两层,attention在解码器的第二层,因为第二层才是lstm的输出,用两层提取到的特征越好。

num_sampled=512, 分批softmax的样本量(

训练和测试差不多,测试只前向传播,不反向更新

3 项目的整体结构

s2s.py:相当于main函数,让代码运行起来
里面有train()、test()、test_bleu()和create_model()四个方法,还有FLAGS成员变量,
相当于静态成员变量 public static final string

decode_conv.py和data_utils.py:是数据处理

s2s_model.py:
里面放的是模型
里面有init()、step()、get_batch_data()和get_batch()四个方法。构造方法传入构造方法的参数,搭建S2SModel框架,然后sampled_loss()和seq2seq_f()两个方法

data_utils.py:
读取数据库中的文件,并且构造正反向字典。把语料分成四个桶,目的是节约计算资源。先转换为db\conversation.db大的桶,再分成四个小的桶。buckets
= [ (5, 15), (10, 20), (15, 25), (20, 30)]
比如buckets[1]指的就是(10, 20),buckets[1][0]指的就是10。
bucket_id指的就是0,1,2,3

dictionary.json:
是所有数字、字母、标点符号、汉字的字典,加上生僻字,以及PAD、EOS、GO、UNK 共6865维度,输入的时候会进行词嵌入word
embedding成512维,输出时,再转化为6865维。

model:
文件夹下装的是训练好的模型。
也就是model3.data-00000-of-00001,这个里面装的就是模型的参数
执行model.saver.restore(sess, os.path.join(FLAGS.model_dir,
FLAGS.model_name))的时候,才是加载目录本地的保存的模型参数的过程,上面建立的模型是个架子,
model = create_model(sess, True),这里加载模型比较耗时,时间复杂度最高

dgk_shooter_min.conv:
是语料,形如: E
M 畹/华/吾/侄/
M 你/接/到/这/封/信/的/时/候/
decode_conv.py: 对语料数据进行预处理
config.json:是配置文件,自动生成的

4 重要的API

4.1 LSTM cells部分:

    cell = tf.contrib.rnn.BasicLSTMCell(size)cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=dropout)cell = tf.contrib.rnn.MultiRNNCell([cell] * num_layers)对上一行的cell去做Dropout的,在外面裹一层DropoutWrapper

构建双层lstm网络,只是一个双层的lstm,不是双层的seq2seq

4.2 损失函数:

tf.nn.sampled_softmax_loss( weights=local_w_t,
b labels=labels, #真实序列值,每次一个
inputs=loiases=local_b,
cal_inputs, #预测出来的值,y^,每次一个
num_sampled=num_samples, #512
num_classes=self.target_vocab_size # 原始字典维度6865)

4.3 搭建seq2seq框架:

  tf.contrib.legacy_seq2seq.embedding_attention_seq2seq(encoder_inputs, # tensor of input seq 30decoder_inputs, # tensor of decoder seq 30tmp_cell, #自定义的cell,可以是GRU/LSTM, 设置multilayer等num_encoder_symbols=source_vocab_size,# 编码阶段字典的维度6865num_decoder_symbols=target_vocab_size, # 解码阶段字典的维度 6865embedding_size=size, # embedding 维度,512num_heads=20, #选20个也可以,精确度会高点,num_heads就是attention机制,选一个就是一个head去连,5个就是5个头去连output_projection=output_projection,# 输出层。不设定的话输出维数可能很大(取决于词表大小),设定的话投影到一个低维向量feed_previous=do_decode,# 是否执行的EOS,是否允许输入中间cdtype=dtype)

4.4 测试部分:

self.outputs, self.losses = tf.contrib.legacy_seq2seq.model_with_buckets(
self.encoder_inputs,
self.decoder_inputs,
targets,
self.decoder_weights,
buckets,
lambda x, y: seq2seq_f(x, y, True),
softmax_loss_function=softmax_loss_function
)

4.5 评价NLP测试效果:

在nltk包里,有个接口叫bleu,可以评估测试结果,NITK是个框架

from nltk.translate.bleu_score import sentence_bleu
score = sentence_bleu(
references,#y值
list(ret),#y^
weights=(1.0,)#权重为1
)

4.6 梯度截断,防止梯度爆炸

clipped_gradients, norm = tf.clip_by_global_norm(gradients,max_gradient_norm)
tf.clip_by_global_norm(t_list, clip_norm, use_norm=None, name=None)

通过权重梯度的总和的比率来截取多个张量的值。t_list是梯度张量, clip_norm是截取的比率,这个函数返回截取过的梯度张量和一个所有张量的全局范数

4.7 模型保存

tf.train.Saver(tf.global_variables(), write_version=tf.train.SaverDef.V2)

5 重点和难点

5.1 函数

def get_batch_data(self, bucket_dbs, bucket_id):
def get_batch(self, bucket_dbs, bucket_id, data):
def step(self,session,encoder_inputs,decoder_inputs,decoder_weights,bucket_id):

5.2 变量

batch_encoder_inputs, batch_decoder_inputs, batch_weights = [], [], []

6 相关参数

model = s2s_model.S2SModel(data_utils.dim,  # 6865,编码器输入的语料长度data_utils.dim,  # 6865,解码器输出的语料长度buckets,  # buckets就是那四个桶,data_utils.buckets,直接在data_utils写的一个变量,就能直接被点出来FLAGS.size, # 隐层神经元的个数512FLAGS.dropout, # 隐层dropout率,dropout不是lstm中的,lstm的几个门里面不需要dropout,没有那么复杂。是隐层的dropoutFLAGS.num_layers, # lstm的层数,这里写的是2FLAGS.max_gradient_norm, # 5,截断梯度,防止梯度爆炸FLAGS.batch_size,  # 64,等下要重新赋值,预测就是1,训练就是64FLAGS.learning_rate,    # 0.003FLAGS.num_samples,  # 512,用作负采样forward_only, #只传一次dtype){"__author__": "qhduan@memect.co","buckets": [[5, 15],[10, 20],[20, 30],[40, 50]],"size": 512,/*s2s lstm单元出来之后的,连的隐层的number unit是512*/"depth": 4,"dropout": 0.8,"batch_size": 512,/*每次往里面放多少组对话对,这个是比较灵活的。如果找一句话之间的相关性,batch_size就是这句话里面的字有多少个,如果要找上下文之间的对话,batch_size就是多少组对话*/"random_state": 0,"learning_rate": 0.0003,/*总共循环20*/"epoch": 20,"train_device": "/gpu:0","test_device": "/cpu:0"}

7 桶机制

7.1 处理数据集

语料库长度桶结构
(5, 10): 5问题长度,10回答长度
每个桶中对话数量,一问一答为一次完整对话

Analysis
(1) 设定4个桶结构,即将问答分成4个部分,每个同种存放对应的问答数据集[87, 69, 36,
8]四个桶中分别有87组对话,69组对话,36组对话,8组对话;
(2) 训练词数据集符合桶长度则输入对应值,不符合桶长度,则为空;
(3) 对话数量占比:[0.435, 0.78, 0.96, 1.0];

7.2 词向量处理seq2seq

获取问答及答案权重

参数:

  • data: 词向量列表,如[[[4,4],[5,6,8]]]
  • bucket_id: 桶编号,值取自桶对话占比

步骤:

  • 问题和答案的数据量:桶的话数buckets = [(5, 10), (10, 15), (20, 25), (40, 50)]
  • 生成问题和答案的存储器
  • 从问答数据集中随机选取问答
  • 问题末尾添加PAD_ID并反向排序
  • 答案添加GO_ID和PAD_ID
  • 问题,答案,权重批量数据
  • 批量问题
  • 批量答案
  • 答案权重即Attention机制
  • 若答案为PAD则权重设置为0,因为是添加的ID,其他的设置为1

Analysis

  • (1) 对问题和答案的向量重新整理,符合桶尺寸则保持对话尺寸,若不符合桶设定尺寸,则进行填充处理,
    问题使用PAD_ID填充,答案使用GO_ID和PAD_ID填充;

  • (2) 对问题和答案向量填充整理后,使用Attention机制,对答案进行权重分配,答案中的PAD_ID权重为0,其他对应的为1;

  • (3) get_batch()处理词向量;返回问题、答案、答案权重数据;
    返回结果如上结果:encoder_inputs, decoder_inputs, answer_weights.

7.3 处理问答及答案权重

参数:session: tensorflow 会话.encoder_inputs: 问题向量列表decoder_inputs: 回答向量列表answer_weights: 答案权重列表bucket_id: 桶编号which bucket of the model to use.forward_only: 前向或反向运算标志位
返回:一个由梯度范数组成的三重范数(如果不使用反向传播,则为无)。平均困惑度和输出

Analysis

  • (1) 根据输入的问答向量列表,分配语料桶,处理问答向量列表,并生成新的输入字典(dict), input_feed = {};

  • (2) 输出字典(dict), ouput_feed = {},根据是否使用反向传播获得参数,使用反向传播,
    output_feed存储更新的梯度范数,损失,不使用反向传播,则只存储损失;

  • (3) 最终的输出为分两种情况,使用反向传播,返回梯度范数,损失,如反向传播不使用反向传播,
    返回损失和输出的向量(用于加载模型,测试效果),如前向传播;

7.4 训练&保存模型

步骤:

  • 检查是否有已存在的训练模型

  • 有模型则获取模型轮数,接着训练

  • 没有模型则从开始训练

  • 一直训练,每过一段时间保存一次模型

  • 如果模型没有得到提升,减小learning rate

  • 保存模型

  • 使用测试数据评估模型

    global step: 500, learning rate: 0.5, loss: 2.574068747580052
    bucket id: 0, eval ppx: 14176.588030763274
    bucket id: 1, eval ppx: 3650.0026667220773
    bucket id: 2, eval ppx: 4458.454110999805
    bucket id: 3, eval ppx: 5290.083583183104
    

7.5 载入模型&测试

(1) 该聊天机器人使用bucket桶结构,即指定问答数据的长度,匹配符合的桶,在桶中进行存取数据;
(2) 该seq2seq模型使用Tensorflow时,未能建立独立标识的图结构,在进行后台封装过程中出现图为空的现象;

从main函数进入test()方法。先去内存中加载训练好的模型model,这部分最耗时,改batch_size为1,传入相关的参数。开始输入一个句子,并将它读进来,读进来之后,按照桶将句子分,按照模型输出,然后去查字典。接着在循环中输入上句话,找对应的桶。然后拿到的下句话的每个字,找概率最大的那个字的index的id输出。get_batch_data(),获取data [('天气\n', '')],也就是问答对,但是现在只有问,没有答get_batch()获取encoder_inputs=1*10,decoder_inputs=1*20 decoder_weights=1*20step()获取预测值output_logits,

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/98414.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Safran与是德科技合作为蔚来提供电动汽车中的5G和C-V2X连接测试

概述 虹科Safran GNSS模拟器助力是德科技&#xff08;Keysight&#xff09;为中国顶级电动汽车制造商之一——蔚来汽车&#xff08;NIO&#xff09;提供了业界领先的UXM 5G测试解决方案以验证5G和C-V2X的连接性&#xff0c;能够根据3GPP和其他标准组织定义的最新5G新无线电&am…

解决扬声器异常

之前使用的是PulseAudio PulseAudio 是默认的音频服务器和音频框架&#xff0c;因此大多数应用程序通过 PulseAudio 来处理音频 但也有一些应用程序直接使用 ALSA&#xff08;Advanced Linux Sound Architecture&#xff09;来与音频硬件交互。在这些情况下&#xff0c;ALSA …

深入理解计算机系统(1):系统组成

一、系统硬件组成 1、控制器&#xff08;CPU&#xff09;&#xff1a;解释和执行内存中的指令 &#xff08;1&#xff09;、控制器 程序控制器&#xff1a;指令指针&#xff0c;指向主存中的机器语言指令&#xff0c;为一个字大小的存储设备或寄存器。 指令寄存器、指令译码器、…

离线安装mysql客户端

下载路径 oracle网站总是在不断更新&#xff0c;所以下载位置随时可能变动但万变不离其宗&#xff0c;学习也要学会一通百通。 首先直接搜索&#xff0c;就能找找到mysql官网 打开网站&#xff0c;并点击 DOWNLOADS 往下滚动&#xff0c;找到社区版下载按钮。…

高效解决 TypeError : ‘ numpy._DTypeMeta‘ object is not subscriptable 问题

文章目录 问题描述解决问题 问题描述 解决问题 参考博文 打开报错位置 AppData\Roaming\Python\Python39\site-packages\cv2\typing\ 添加single-quotes&#xff0c;即单引号 博主说The trick is to use single-quotes to avoid the infamous TypeError: ‘numpy._DTypeMeta’…

微信小程序发布流程

前言 上周写了如何写一个小程序&#xff0c;然后经过查资料&#xff0c;改bug&#xff0c;找chatgpt美化页面&#xff0c;我写了一个计算代谢率的小工具&#xff0c;写完了之后该怎么办呢&#xff0c;当然是发布上架&#xff0c;然后我就开始了发布的折腾 提交代码 这一步很…

【uniapp】subnvue组件数据更新视图未更新问题

背景 : 页面中的弹窗使用了subnvue来写, 根据数据依次展示一个一个的弹窗, 点击"关闭"按钮关闭当前弹窗, 显示下一个弹窗 问题 : 当点击关闭时( 使用的splice() ), 数据更新了 , 而视图没有更新, 实际上splice() 是不仅更新数据, 也可以更新视图的 解决 : this.$fo…

WPF中DataContext的绑定技巧

先看效果: 上面的绑定值都是我们自定义的属性,有了以上的提示,那么我们可以轻松绑定字段,再也不用担心错误了。附带源码。 目录 1.建立mvvm项目 2.cs后台使用DataContext绑定 3.xaml前台使用DataContext绑定

selenium查找网页如何处理网站资源一直加载非常卡或者失败的情况

selenium查找网页如何处理网站资源一直加载失败的情况 selenium获取一个网页&#xff0c;某个网页的资源卡了很久还没有加载成功&#xff0c;如何放弃这个卡的数据&#xff0c;继续往下走 有2钟方式。通常可以采用下面的方式一来处理这种情况 方式一、WebDriverWait 这种方式…

差分构造法推广:arc166_d

https://atcoder.jp/contests/arc166/tasks/arc166_d 首先肯定是这样子放&#xff1a; 考虑相邻之间的差&#xff0c;本质就是橙色区间减蓝色区间数量 区间数量越少显然越优&#xff0c;所以我们要么保留橙区间&#xff0c;要么保留紫区间&#xff0c;然后两两匹配 #include…

如何做好sop流程图?sop流程图用什么软件做?

5.如何做好sop流程图&#xff1f;sop流程图用什么软件做&#xff1f; 建立标准作业程序sop已经成为企业进步和发展的必经之路&#xff0c;不过&#xff0c;很多刚刚开始着手搭建sop的企业并不知道要如何操作&#xff0c;对于如何做sop流程图、用什么软件做sop流程图等问题充满…

数据安全防护:云访问安全代理(CASB)

云访问安全代理&#xff08;Cloud Access Security Broker&#xff0c;CASB&#xff09;&#xff0c;是一款面向应用的数据防护服务&#xff0c;基于免应用开发改造的配置方式&#xff0c;提供数据加密、数据脱敏功能。数据加密支持国密算法&#xff0c;提供面向服务侧的字段级…

记录一次springboot使用定时任务中@Async没有生效的场景

环境说明 jdk21springboot 3.0.11 springcloud 2022.0.0 spring-cloud-alibaba 2022.0.0.0 在开发一个定时触发的任务的时候&#xff0c;由于开发执行任务的函数比较耗费时间&#xff0c;所以采用异步解决问题。 发现并没有按照预期的触发 经询问后&#xff0c;发现当前类的…

phpstudy本地域名伪静态

环境&#xff1a;WNMP(Windows10 Nginx1.15.11 MySQL5.7.26 【PHP 7.4.3 (cli) (built: Feb 18 2020 17:29:57) ( NTS Visual C 2017 x64 ) 】) 使用PhpStudy配置本地域名后&#xff0c;设置伪静态&#xff0c;这样在Web端打开网站就不需要输入index.php了&#xff0c;很简单…

竞赛选题 深度学习 python opencv 火焰检测识别 火灾检测

文章目录 0 前言1 基于YOLO的火焰检测与识别2 课题背景3 卷积神经网络3.1 卷积层3.2 池化层3.3 激活函数&#xff1a;3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络 4 YOLOV54.1 网络架构图4.2 输入端4.3 基准网络4.4 Neck网络4.5 Head输出层 5 数据集准备5.1 数…

学习记忆——数学篇——案例——代数——均值不等式

文章目录 理解记忆法定义定义推导 重点记忆法用途记忆法使用前提做题应用及易错点两种用法 出题模式法模型识别 谐音记忆法一正二定三相等 秒杀方法 理解记忆法 定义 1.算术平均值&#xff1a;设有n个数 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1​,x2​,...,xn​&#xf…

【LeetCode: 901. 股票价格跨度 | 单调栈】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

如何在VS2022中进行调试bug,调试的快捷键,debug与release之间有什么区别

什么是bug 在学习编程的过程中&#xff0c;应该都听说过bug吧&#xff0c;那么bug这个词究竟是怎么来的呢&#xff1f; 其实Bug的本意是“虫子”或者“昆虫”&#xff0c;在1947年9月9日&#xff0c;格蕾丝赫柏&#xff0c;一位为美国海军工作的电脑专家&#xff0c;也是最早…

【linux进程(三)】进程有哪些状态?--Linux下常见的三种进程状态

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:Linux从入门到精通⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学更多操作系统知识   &#x1f51d;&#x1f51d; Linux进程 1. 前言2. 操作系统…

十五、异常(5)

本章概要 异常限制构造器 异常限制 当覆盖方法的时候&#xff0c;只能抛出在基类方法的异常说明里列出的那些异常。这个限制很有用&#xff0c;因为这意味着与基类一起工作的代码&#xff0c;也能和导出类一起正常工作&#xff08;这是面向对象的基本概念&#xff09;&#…