【学习笔记】莫比乌斯反演

退役OIer回来受虐啦

一些定义

μ ( x ) = { 1 x > 1 ( − 1 ) n x = ∏ i = 1 n P i 0 o t h e r w i s e \mu(x) = \begin{cases} 1 & x > 1 \\ (-1)^n & x = \prod _ {i=1} ^ {n} P_{i}\\ 0 & otherwise \end{cases} μ(x)= 1(1)n0x>1x=i=1nPiotherwise

φ ( n ) = ∑ i = 1 n [ g c d ( i , n ) = 1 ] \varphi(n)=\sum_{i=1}^{n}\ [gcd(i,n)=1] φ(n)=i=1n [gcd(i,n)=1]

ε ( n ) = [ n = 1 ] \varepsilon(n)=\ [n=1] ε(n)= [n=1]

一些性质

∑ d ∣ n μ ( d ) = ε ( n ) \sum_{d|n}\mu(d)=\varepsilon(n) dnμ(d)=ε(n)
μ ∗ 1 = ε \mu\ast1=\varepsilon μ1=ε
推广一下:
[ g c d ( i , j ) = 1 ] = ∑ d ∣ g c d ( i , j ) μ ( d ) [gcd(i,j)=1]=\sum_{d|gcd(i,j)}\mu(d) [gcd(i,j)=1]=dgcd(i,j)μ(d)


φ ∗ 1 = i d \varphi \ast 1=id φ1=id

莫比乌斯变换

f ( n ) = ∑ d ∣ n g ( d ) ⇒ g ( n ) = ∑ d ∣ n f ( d ) μ ( n d ) f(n)=\sum_{d|n} g(d)\ \Rightarrow\ g(n)=\sum_{d|n}f(d)\mu(\frac{n}{d}) f(n)=dng(d)  g(n)=dnf(d)μ(dn)
f ( n ) = ∑ n ∣ d g ( d ) ⇒ g ( n ) = ∑ n ∣ d μ ( d n ) f ( d ) f(n)=\sum_{n|d}g(d)\ \Rightarrow\ g(n)=\sum_{n|d}\mu(\frac{d}{n})f(d) f(n)=ndg(d)  g(n)=ndμ(nd)f(d)

例题

[HAOI2011] Problem b

题目描述

对于给出的 n n n 个询问,每次求有多少个数对 ( x , y ) (x,y) (x,y),满足 a ≤ x ≤ b a \le x \le b axb c ≤ y ≤ d c \le y \le d cyd,且 gcd ⁡ ( x , y ) = k \gcd(x,y) = k gcd(x,y)=k gcd ⁡ ( x , y ) \gcd(x,y) gcd(x,y) 函数为 x x x y y y 的最大公约数。

输入格式

第一行一个整数 n n n,接下来 n n n 行每行五个整数,分别表示 a , b , c , d , k a,b,c,d,k a,b,c,d,k

输出格式

n n n 行,每行一个整数表示满足要求的数对 ( x , y ) (x,y) (x,y) 的个数。

样例 #1

样例输入 #1
2
2 5 1 5 1
1 5 1 5 2
样例输出 #1
14
3

提示

对于 100 % 100\% 100% 的数据满足: 1 ≤ n , k ≤ 5 × 1 0 4 1 \le n,k \le 5 \times 10^4 1n,k5×104 1 ≤ a ≤ b ≤ 5 × 1 0 4 1 \le a \le b \le 5 \times 10^4 1ab5×104 1 ≤ c ≤ d ≤ 5 × 1 0 4 1 \le c \le d \le 5 \times 10^4 1cd5×104

题解

根据容斥原理,原式可以分成 4 块来处理,每一块的式子都为
∑ i = 1 n ∑ j = 1 m [ gcd ⁡ ( i , j ) = k ] \sum_{i=1}^{n}\sum_{j=1}^{m}[\gcd(i,j)=k] i=1nj=1m[gcd(i,j)=k]
考虑化简该式子

∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ ε ( gcd ⁡ ( i , j ) ) \sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}\varepsilon(\gcd(i,j)) i=1knj=1kmε(gcd(i,j))
ε \varepsilon ε 函数展开得到

∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ ∑ d ∣ gcd ⁡ ( i , j ) μ ( d ) \displaystyle\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}\sum_{d\mid \gcd(i,j)}\mu(d) i=1knj=1kmdgcd(i,j)μ(d)
变换求和顺序,先枚举 d ∣ gcd ⁡ ( i , j ) d\mid \gcd(i,j) dgcd(i,j) 可得

∑ d = 1 μ ( d ) ∑ i = 1 ⌊ n k ⌋ [ d ∣ i ] ∑ j = 1 ⌊ m k ⌋ [ d ∣ j ] \displaystyle\sum_{d=1}\mu(d)\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}[d\mid i]\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}[d\mid j] d=1μ(d)i=1kn[di]j=1km[dj]
易知 1 ∼ ⌊ n k ⌋ 1\sim\lfloor\dfrac{n}{k}\rfloor 1kn d d d 的倍数有 ⌊ n k d ⌋ \lfloor\dfrac{n}{kd}\rfloor kdn 个,故原式化为

∑ d = 1 min ⁡ ( ⌊ n k ⌋ , ⌊ m k ⌋ ) μ ( d ) ⌊ n k d ⌋ ⌊ m k d ⌋ \displaystyle\sum_{d=1}^{\min(\lfloor \frac{n}{k}\rfloor,\lfloor \frac{m}{k}\rfloor)}\mu(d)\lfloor\frac{n}{kd}\rfloor\lfloor\frac{m}{kd}\rfloor d=1min(⌊kn,km⌋)μ(d)kdnkdm
整除分块即可求解

代码

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=1e5+77;
int mu[N],sum[N];
vector<int> p;
bool bz[N];
void init(int n)
{mu[1]=1;for(int i=2; i<=n; i++){if(!bz[i]){mu[i]=-1;p.push_back(i);}for(auto j:p){if(j*i>n) break;bz[i*j]=1;if(i%j==0) break;else mu[i*j]=-mu[i];}}for(int i=1; i<=n; i++) sum[i]=sum[i-1]+mu[i];
}
int solve(int n,int m,int k)
{int ans=0;n/=k; m/=k;for(int l=1,r; l<=min(n,m); l=r+1){r=min((n/(n/l)),(m/(m/l)));ans+=(n/l)*(m/l)*(sum[r]-sum[l-1]);}return ans;
}
void O_o()
{int a,b,c,d,k;cin>>a>>b>>c>>d>>k;cout<<solve(b,d,k)-solve(a-1,d,k)-solve(b,c-1,k)+solve(a-1,c-1,k)<<"\n";
}
signed main()
{ios::sync_with_stdio(false); cin.tie(0),cout.tie(0);int T=1;init(50000);cin>>T;while(T--){O_o();}
}

[国家集训队] Crash的数字表格 / JZPTAB

题目描述

今天的数学课上,Crash 小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数 a a a b b b lcm ( a , b ) \text{lcm}(a,b) lcm(a,b) 表示能同时被 a a a b b b 整除的最小正整数。例如, lcm ( 6 , 8 ) = 24 \text{lcm}(6, 8) = 24 lcm(6,8)=24

回到家后,Crash 还在想着课上学的东西,为了研究最小公倍数,他画了一张 $ n \times m$ 的表格。每个格子里写了一个数字,其中第 i i i 行第 j j j 列的那个格子里写着数为 lcm ( i , j ) \text{lcm}(i, j) lcm(i,j)

看着这个表格,Crash 想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当 n n n m m m 很大时,Crash 就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash 只想知道表格里所有数的和对 20101009 20101009 20101009 取模后的值。

输入格式

输入包含一行两个整数,分别表示 n n n m m m

输出格式

输出一个正整数,表示表格中所有数的和对 20101009 20101009 20101009 取模后的值。

样例 #1

样例输入 #1
4 5
样例输出 #1
122

提示

样例输入输出 1 解释

该表格为:

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
2 2 2 2 2 2 6 6 6 4 4 4 10 10 10
3 3 3 6 6 6 3 3 3 12 12 12 15 15 15
4 4 4 4 4 4 12 12 12 4 4 4 20 20 20
数据规模与约定
  • 对于 30 % 30\% 30% 的数据,保证 n , m ≤ 1 0 3 n, m \le 10^3 n,m103
  • 对于 70 % 70\% 70% 的数据,保证 n , m ≤ 1 0 5 n, m \le 10^5 n,m105
  • 对于 100 % 100\% 100% 的数据,保证 1 ≤ n , m ≤ 1 0 7 1\le n,m \le 10^7 1n,m107

题解

∑ i = 1 n ∑ j = 1 m l c m ( i , j ) = ∑ i = 1 n ∑ j = 1 m i ⋅ j g c d ( i , j ) = ∑ i = 1 n ∑ j = 1 m ∑ d = g c d ( i , j ) i ⋅ j d = ∑ d = 1 m i n ( n , m ) ∑ d ∣ i n ∑ d ∣ j m [ g c d ( i , j ) = d ] i ⋅ j d = ∑ d = 1 m i n ( n , m ) d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ g c d ( i , j ) = 1 ] i j \sum_{i=1}^{n}\sum_{j=1}^{m} lcm(i,j)\\ =\sum_{i=1}^{n}\sum_{j=1}^{m} \frac{i\cdot j}{gcd(i,j)}\\ =\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{d=gcd(i,j)} \frac{i\cdot j}{d}\\ =\sum_{d=1}^{min(n,m)}\sum_{d|i}^{n}\sum_{d|j}^{m} [gcd(i,j)=d]\frac{i\cdot j}{d}\\ =\sum_{d=1}^{min(n,m)}d\ \sum_{i=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\sum_{j=1}^{\left\lfloor \frac{m}{d} \right\rfloor} [gcd(i,j)=1]i j i=1nj=1mlcm(i,j)=i=1nj=1mgcd(i,j)ij=i=1nj=1md=gcd(i,j)dij=d=1min(n,m)dindjm[gcd(i,j)=d]dij=d=1min(n,m)d i=1dnj=1dm[gcd(i,j)=1]ij

S ( n , m ) = ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = 1 ] i j S(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m} [gcd(i,j)=1]i j S(n,m)=i=1nj=1m[gcd(i,j)=1]ij

S ( n , m ) = ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = 1 ] i j = ∑ d = 1 n ∑ d ∣ i n ∑ d ∣ j m μ ( d ) ⋅ i ⋅ j = ∑ d = 1 n μ ( d ) ⋅ d 2 ⋅ ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i ⋅ j S(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m} [gcd(i,j)=1]i j\\ =\sum_{d=1}^n\sum_{d\mid i}^n\sum_{d\mid j}^m\mu(d)\cdot i\cdot j\\ =\sum_{d=1}^n\mu(d)\cdot d^2\cdot\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}i\cdot j S(n,m)=i=1nj=1m[gcd(i,j)=1]ij=d=1ndindjmμ(d)ij=d=1nμ(d)d2i=1dnj=1dmij

观察上式,前半段可以预处理前缀和;后半段又是一个范围内数对之和,记

g ( n , m ) = ∑ i = 1 n ∑ j = 1 m i ⋅ j = n ⋅ ( n + 1 ) 2 × m ⋅ ( m + 1 ) 2 g(n,m)=\sum_{i=1}^n\sum_{j=1}^m i\cdot j=\frac{n\cdot(n+1)}{2}\times\frac{m\cdot(m+1)}{2} g(n,m)=i=1nj=1mij=2n(n+1)×2m(m+1)
可以 Θ ( 1 ) \Theta(1) Θ(1) 求解

不过这玩意要整除分块套整除分块,而且细节不少

代码

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=1e7+7,mod=20101009;
int mu[N],sum[N];
vector<int> p;
bool bz[N];
int Sum(int x, int y)
{return ((x*(x+1)/2%mod)*(y*(y+1)/2%mod))%mod;
}
void init(int n)
{mu[1]=1;for(int i=2; i<=n; i++){if(!bz[i]){mu[i]=-1;p.push_back(i);}for(auto j:p){if(j*i>n) break;bz[i*j]=1;if(i%j==0) break;else mu[i*j]=-mu[i];}}for(int i=1; i<=n; i++) sum[i]=(sum[i-1]+mu[i]*i*i%mod)%mod;
}
int S(int n,int m)
{int ans=0;for(int l=1,r; l<=min(n,m); l=r+1){r=min(n/(n/l),m/(m/l));(ans+=Sum(n/l,m/l)%mod*(sum[r]-sum[l-1])%mod)%=mod;}return ans;
}
void O_o()
{int n,m,ans=0;cin>>n>>m;init(n);for(int l=1,r; l<=min(n,m); l=r+1){r=min(n/(n/l),m/(m/l));(ans+=((r-l+1)*(l+r)/2)%mod*S(n/l,m/l)%mod)%=mod;}cout<<(ans+mod)%mod;
}
signed main()
{ios::sync_with_stdio(false); cin.tie(0),cout.tie(0);int T=1;//	cin>>T;while(T--){O_o();}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/98179.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python读取CSV格式文件,遇到的问题20231007

python读取的CSV文件必须是具备相同列数的吗&#xff1f; 在Python中&#xff0c;读取CSV文件时不一定要求每一行都具有相同的列数。CSV文件可以包含不同数量的列&#xff0c;但你需要小心处理不同列数的情况&#xff0c;以确保代码能够正常处理。 通常情况下&#xff0c;CSV文…

黑马JVM总结(二十八)

&#xff08;1&#xff09;语法糖-foreach &#xff08;2&#xff09;语法糖-switch-string &#xff08;3&#xff09;语法糖-switch-enum &#xff08;4&#xff09;语法糖-枚举类 枚举类 &#xff08;5&#xff09;语法糖-twr1

Linux登录自动执行脚本

一、所有用户每次登录时自动执行。 1、在/etc/profile文件末尾添加。 将启动命令添加到/etc/profile文件末尾。 2、在/etc/profile.d/目录下添加sh脚本。 在/etc/profile.d/目录下新建sh脚本&#xff0c;设置每次登录自动执行脚本。有用户登录时&#xff0c;/etc/profile会遍…

【Leetcode】 51. N 皇后

按照国际象棋的规则&#xff0c;皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上&#xff0c;并且使皇后彼此之间不能相互攻击。 给你一个整数 n &#xff0c;返回所有不同的 n 皇后问题 的解决方案。 每一种…

1.Linux入门基本指令

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 目录 01.ls指令 02.pwd指令 03.cd指令 04.touch指令 05.mkdir指令(重要) 06.rmdir&&rm指令(重要) 07.man指令(重要) 08.cp指令(重要) 09.mv指令(重要) 10.cat指令 nano指令 echo指令 输出重定向 追加重…

ChatGPT是如何产生心智的?

一、前言 - ChatGPT真的产生心智了吗&#xff1f; 来自斯坦福大学的最新研究结论&#xff0c;一经发出就造成了学术圈的轰动&#xff0c;“原本认为是人类独有的心智理论&#xff08;Theory of Mind&#xff0c;ToM&#xff09;&#xff0c;已经出现在ChatGPT背后的AI模型上”…

【考研复习】union有关的输出问题

文章目录 遇到的问题正确解答拓展参考文章 遇到的问题 首次遇到下面的代码时&#xff0c;感觉应该输出65,323。深入理解union的存储之后发现正确答案是&#xff1a;67,323. union {char c;int i; } u; int main(){u.c A;u.i 0x143;printf("%d,%d\n", u.c, u.i); …

软件测试基础 - 测试覆盖率

一、覆盖率概念 覆盖率是用来度量测试完整性的一个手段&#xff0c;是测试技术有效性的一个度量。分为&#xff1a;白盒覆盖、灰盒覆盖和黑盒覆盖&#xff1b;测试用例设计不能一味追求覆盖率&#xff0c;因为测试成本随覆盖率的增加而增加。 覆盖率&#xff08;至少被执行一次…

JC/T 1006-2018 釉面钢化及半钢化玻璃检测

釉面钢化及半钢化玻璃是指将玻璃釉料涂布或打印在玻璃表面&#xff0c;经过钢化或半钢化处理&#xff0c;在玻璃表面形成牢固釉层的玻璃制品。 JC/T 1006-2018釉面钢化及半钢化玻璃测项目&#xff1a; 测试项目 测试方法 外观 JC/T 1006 尺寸偏差 JC/T 1006 弯曲度 JC/…

Java重点难点解析

Java —— 重点难点易错点 重难点 a++和++a易错点 continue & length & 修饰符重点 方法重写易错点 根据索引查找子串重点 静态方法 & switch易错点 finally和return结合使用🢂 能直接将下面代码的值在不看答案的前提下推出来就可以不用看了 !!! 重难点 a++和++…

TensorFlow入门(九、张量及操作函数介绍)

在TensorFlow程序中,所有的数据都由tensor数据结构来代表。即使在计算图中,操作间传递的数据也是Tensor tensor在TensorFlow中并不是直接采用数组的形式,它只是对TensorFlow中计算结果的引用。也就是说在张量中并没有真正保存数字,它保存的是如何得到这些数字的计算过程 一个…

解决loadDep:omelette: sill install loadAllDepsIntoIdealTree

报错信息如下&#xff1a; 解决方案&#xff1a; 1、设置为淘宝的镜像源 npm config set registry https://registry.npm.taobao.org 2、 命令检验是否成功 npm config get registry 3、继续运行npm install即可 npm install 运行效果&#xff1a;

【arm实验1】GPIO实验-LED灯的流水亮灭

linuxlinux:~/study/01-asm$ cat asm-led.S .text .global _start _start: 1.设置GPIOE寄存器的时钟使能 RCC_MP_AHB4ENSETR[4]->1 0x50000a28 LDR R0,0X50000A28 LDR R1,[R0] 从r0为起始地址的4字节数据取出放在R1 ORR R1,R1,#(0x1<<4) 第4位设置为1 ORR R…

轻松实现视频、音频、文案批量合并,享受批量剪辑的便捷

在日常生活中&#xff0c;我们经常会需要将多个视频、音频和文案进行合并剪辑&#xff0c;以制作出符合我们需求的短视频。然而&#xff0c;这个过程通常需要花费大量的时间和精力。幸运的是&#xff0c;现在有一款名为“固乔智剪软件”的工具可以帮助我们轻松完成这个任务。 首…

文献综述|CV领域神经网络水印发展综述

前言&#xff1a;最近接触了「模型水印」这一研究领域&#xff0c;阅读几篇综述之后&#xff0c;大致了解了本领域的研究现状&#xff0c;本文就来总结一下该领域的一些基础知识&#xff0c;以飨读者。 ⚠️注&#xff1a;本文中出现的研究工作均基于计算机视觉任务开展&#x…

如何部署一个高可用高并发的电商平台

假设我们已经有了一个特别大的电商平台&#xff0c;这个平台应该部署在哪里呢&#xff1f;假设我们用公有云&#xff0c;一般公有云会有多个位置&#xff0c;比如在华东、华北、华南都有。毕竟咱们的电商是要服务全国的&#xff0c;当然到处都要部署了。我们把主站点放在华东。…

成功改派的访问学者申请建议

在申请成为访问学者时&#xff0c;成功改派是一个重要的关键步骤&#xff0c;这需要您精心策划和准备。在本文中&#xff0c;知识人网小编将为您提供一些建议&#xff0c;帮助您顺利实现申请改派成功的目标。 1.认真审视您的动机&#xff1a;在决定改派时&#xff0c;首先要仔细…

架构方法、模型、范式、治理

从架构方法、模型、范式、治理等四个方面介绍架构的概念和方法论、典型业务场景下的架构范式、不同架构的治理特点这3个方面的内容

oracle 导入数据泵常用语句

oracle常用语句 window10 导出导入数据泵文件导入数据泵文件导出数据泵文件 oracle表空间查询、剩余空间查询查询表空间大小及对应文件查询各个表空间大小扩充表空间 window10 导出导入数据泵文件 导入数据泵文件 首先将数据泵文件放在oracle安装得对应位置&#xff0c;例如&…

git 同时配置 gitee github

git 同时配置 gitee github 1、 删除C:\Users\dell\.ssh目录。 在任意目录右击——》Git Bash Here&#xff0c;打开Git Bash窗口&#xff0c;下方命令在Git Bash窗口输入。 2、添加git全局范围的用户名和邮箱 git config --global user.email "609612189qq.com" …