深度学习实战基础案例——卷积神经网络(CNN)基于MobileNetV3的肺炎识别|第3例

文章目录

  • 前言
  • 一、数据集介绍
  • 二、前期工作
  • 三、数据集读取
  • 四、构建CA注意力模块
  • 五、构建模型
  • 六、开始训练

前言

Google公司继MobileNetV2之后,在2019年发表了它的改进版本MobileNetV3。而MobileNetV3共有两个版本,分别是MobileNetV3-Large和MobileNetV2-Small。改进后的MobileNetV3,在ImageNet数据集的分类精度上,它的MobileNetV3-Large版本相较于MobileNetV2提升了大概3.2%的精度同时延迟减少了20%,而MobileNetV3-Small则提升了6.6%的精度,减少了大概23%的延迟。

今天,我们用MobileNetV3来进行肺炎的识别,同时我们用CA注意力机制替换了原模型中的SE注意力模块。


我的环境:

  • 基础环境:python3.7
  • 编译器:jupyter notebook
  • 深度学习框架:pytorch

一、数据集介绍

ChestXRay2017数据集共包含5856张胸腔X射线透视图,诊断结果(即分类标签)主要分为正常和肺炎,其中肺炎又可以细分为:细菌性肺炎和病毒性肺炎。

胸腔X射线图像选自广州市妇幼保健中心的1至5岁儿科患者的回顾性研究。所有胸腔X射线成像都是患者常规临床护理的一部分。

为了分析胸腔X射线图像,首先对所有胸腔X光片进行了筛查,去除所有低质量或不可读的扫描,从而保证图片质量。然后由两名专业医师对图像的诊断进行分级,最后为降低图像诊断错误, 还由第三位专家检查了测试集。

主要分为train和test两大子文件夹,分别用于模型的训练和测试。在每个子文件内又分为了NORMAL(正常)和PNEUMONIA(肺炎)两大类。

在PNEUMONIA文件夹内含有细菌性和病毒性肺炎两类,可以通过图片的命名格式进行判别。
在这里插入图片描述

二、前期工作

from torch import nn
import torch.utils.data as Data
from torchvision.transforms import transforms
import torchvision
import torchsummary# 设置device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

三、数据集读取

data_transform = {"train": transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),"val": transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}train_data=torchvision.datasets.ImageFolder(root=r"ChestXRay2017/chest_xray/train",transform=data_transform["train"])
train_dataloader=Data.DataLoader(train_data,batch_size=48,shuffle=True)test_data=torchvision.datasets.ImageFolder(root=r"ChestXRay2017/chest_xray/test",transform=data_transform["val"])
test_dataloader=Data.DataLoader(test_data,batch_size=48,shuffle=True)

四、构建CA注意力模块

我们都知道注意力机制在各种计算机视觉任务中都是有帮助,如图像分类和图像分割。其中最为经典和被熟知的便是SENet,它通过简单地squeeze每个2维特征图,进而有效地构建通道之间的相互依赖关系。
在这里插入图片描述

SE Block虽然近2年来被广泛使用;然而,它只考虑通过建立通道之间的关系来重新衡量每个通道的重要性,而忽略了位置信息,但是位置信息对于生成空间选择性attention maps是很重要的。因此就有人引入了一种新的注意块,它不仅仅考虑了通道间的关系还考虑了特征空间的位置信息,即CA(Coordinate Attention)注意力机制。

在这里插入图片描述

class h_swish(nn.Module):def __init__(self, inplace=True):super(h_swish, self).__init__()self.relu6 = nn.ReLU6()def forward(self, x):return x * self.relu6(x + 3) / 6class CoordAtt(nn.Module):def __init__(self, inp, oup, groups=32):super(CoordAtt, self).__init__()self.pool_h = nn.AdaptiveAvgPool2d((None, 1))self.pool_w = nn.AdaptiveAvgPool2d((1, None))mip = max(8, inp // groups)self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(mip)self.conv2 = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)self.conv3 = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)self.relu = h_swish()def forward(self, x):identity = xn,c,h,w = x.size()x_h = self.pool_h(x)x_w = self.pool_w(x).permute(0, 1, 3, 2)y = torch.cat([x_h, x_w], dim=2)y = self.conv1(y)y = self.bn1(y)y = self.relu(y)x_h, x_w = torch.split(y, [h, w], dim=2)x_w = x_w.permute(0, 1, 3, 2)x_h = self.conv2(x_h).sigmoid()x_w = self.conv3(x_w).sigmoid()x_h = x_h.expand(-1, -1, h, w)x_w = x_w.expand(-1, -1, h, w)y = identity * x_w * x_h# y=x_w * x_hreturn yclass CA_SA(nn.Module):def __init__(self,inchannel,outchannel):super(CA_SA, self).__init__()self.CA=CoordAtt(inchannel,outchannel)self.SA=Spatial_Attention_Module(7)def forward(self,x):y=self.CA(x)z=self.SA(x)return x*y*z

五、构建模型

import torch.nn as nn
import torch
import torchsummarydevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# 定义h-swith激活函数
class HardSwish(nn.Module):def __init__(self, inplace=True):super(HardSwish, self).__init__()self.relu6 = nn.ReLU6()def forward(self, x):return x * self.relu6(x + 3) / 6# DW卷积
def ConvBNActivation(in_channels, out_channels, kernel_size, stride, activate):# 通过设置padding达到当stride=2时,hw减半的效果。此时不与kernel_size有关,所实现的公式为: padding=(kernel_size-1)//2# 当kernel_size=3,padding=1时: stride=2 hw减半, stride=1 hw不变# 当kernel_size=5,padding=2时: stride=2 hw减半, stride=1 hw不变# 从而达到了使用 stride 来控制hw的效果, 不用去关心kernel_size的大小,控制单一变量return nn.Sequential(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,padding=(kernel_size - 1) // 2, groups=in_channels),nn.BatchNorm2d(out_channels),nn.ReLU6() if activate == 'relu' else HardSwish())class Inceptionnext(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, stride, activate):super(Inceptionnext, self).__init__()gc = int(in_channels * 1 / 4)  # channel number of a convolution branch# self.dwconv_hw = nn.Conv2D(gc, gc, kernel_size,stride=stride,padding=(kernel_size-1)//2,groups=gc)self.dwconv_hw1 = nn.Conv2d(gc, gc, (1, kernel_size), stride=stride, padding=(0, (kernel_size - 1) // 2),groups=gc)self.dwconv_hw2 = nn.Conv2d(gc, gc, (kernel_size, 1), stride=stride, padding=((kernel_size - 1) // 2, 0),groups=gc)self.dwconv_hw = nn.Sequential(nn.Conv2d(gc, gc, (1, kernel_size), stride=stride, padding=(0, (kernel_size - 1) // 2), groups=gc),nn.Conv2d(gc, gc, (kernel_size, 1), stride=stride, padding=((kernel_size - 1) // 2, 0), groups=gc))# self.dwconv_hw = nn.Sequential(#     nn.Conv2d(gc,gc//2,kernel_size=1,stride=1),#     nn.Conv2d(gc//2, gc//2, (1, kernel_size), stride=stride, padding=(0, (kernel_size - 1) // 2), groups=gc//2),#     nn.Conv2d(gc//2, gc//2, (kernel_size, 1), stride=stride, padding=((kernel_size - 1) // 2, 0), groups=gc//2)#     )self.dwconv_w = nn.Conv2d(gc, gc, kernel_size=(1, 11), stride=stride, padding=(0, 11 // 2), groups=gc)self.dwconv_h = nn.Conv2d(gc, gc, kernel_size=(11, 1), stride=stride, padding=(11 // 2, 0), groups=gc)self.batch2d = nn.BatchNorm2d(out_channels)self.activate = nn.ReLU6() if activate == 'relu' else HardSwish()self.split_indexes = (gc, gc, gc, in_channels - 3 * gc)self.cheap=nn.Sequential(nn.Conv2d(gc // 2, gc // 2, (1, 3), stride=stride, padding=(0, (3 - 1) // 2),groups=gc//2),nn.Conv2d(gc // 2, gc // 2, (3, 1), stride=stride, padding=((3 - 1) // 2, 0), groups=gc//2))def forward(self, x):# B, C, H, W = x.shapex_hw, x_w, x_h, x_id = torch.split(x, self.split_indexes, dim=1)x = torch.cat((self.dwconv_hw(x_hw),self.dwconv_w(x_w),self.dwconv_h(x_h),x_id),dim=1)# x = torch.cat(#     (torch.cat((self.dwconv_hw(x_hw),self.cheap(self.dwconv_hw(x_hw))),dim=1),#      self.dwconv_w(x_w),#      self.dwconv_h(x_h),#      x_id),#     dim=1)x = self.batch2d(x)x = self.activate(x)return x# PW卷积(接全连接层)
def Conv1x1BN(in_channels, out_channels):return nn.Sequential(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),nn.BatchNorm2d(out_channels))class SqueezeAndExcite(nn.Module):def __init__(self, in_channels, out_channels, se_kernel_size, divide=4):super(SqueezeAndExcite, self).__init__()mid_channels = in_channels // divide   # 维度变为原来的1/4# 将当前的channel平均池化成1self.pool = nn.AvgPool2d(kernel_size=se_kernel_size,stride=1)# 两个全连接层 最后输出每层channel的权值self.SEblock = nn.Sequential(nn.Linear(in_features=in_channels, out_features=mid_channels),nn.ReLU6(),nn.Linear(in_features=mid_channels, out_features=out_channels),HardSwish(),)def forward(self, x):a=x.shapeb, c, h, w = a[0],a[1],a[2],a[3]out = self.pool(x)       # 不管当前的 h,w 为多少, 全部池化为1out = out.reshape([b, -1])    # 打平处理,与全连接层相连# 获取注意力机制后的权重out = self.SEblock(out)# out是每层channel的权重,需要扩维才能与原特征矩阵相乘out = out.reshape([b, c, 1, 1])  # 增维return out * x# # 普通的1x1卷积
# class Conv1x1BNActivation(nn.Module):
#     def __init__(self,inchannel,outchannel,activate):
#         super(Conv1x1BNActivation, self).__init__()
#         self.first=nn.Sequential(
#             nn.Conv2d(inchannel,outchannel//2,kernel_size=1,stride=1),
#             nn.Conv2d(outchannel//2,outchannel//2,kernel_size=3,stride=1,padding=1,groups=outchannel//2)
#                                 )
#         self.second=nn.Conv2d(outchannel//2,outchannel//2,kernel_size=3,stride=1,padding=1,groups=outchannel//2)
#         self.BN=nn.BatchNorm2d(outchannel)
#         self.act=nn.ReLU6() if activate == 'relu' else HardSwish()
#     def forward(self,x):
#         x=self.first(x)
#         y=torch.cat((x,self.second(x)),dim=1)
#         y=self.BN(y)
#         y=self.act(y)
#         return y
def Conv1x1BNActivation(in_channels,out_channels,activate):return nn.Sequential(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),nn.BatchNorm2d(out_channels),nn.ReLU6() if activate == 'relu' else HardSwish())class SEInvertedBottleneck(nn.Module):def __init__(self, in_channels, mid_channels, out_channels, kernel_size, stride, activate, use_se,se_kernel_size=1):super(SEInvertedBottleneck, self).__init__()self.stride = strideself.use_se = use_seself.in_channels = in_channelsself.out_channels = out_channels# mid_channels = (in_channels * expansion_factor)# 普通1x1卷积升维操作self.conv = Conv1x1BNActivation(in_channels, mid_channels, activate)# DW卷积 维度不变,但可通过stride改变尺寸 groups=in_channelsif stride == 1:self.depth_conv = Inceptionnext(mid_channels, mid_channels, kernel_size, stride, activate)else:self.depth_conv = ConvBNActivation(mid_channels, mid_channels, kernel_size, stride, activate)# self.depth_conv = ConvBNActivation(mid_channels, mid_channels, kernel_size,stride,activate)# 注意力机制的使用判断if self.use_se:# self.SEblock = SqueezeAndExcite(mid_channels, mid_channels, se_kernel_size)# self.SEblock = CBAM.CBAMBlock("FC", 5, channels=mid_channels, ratio=9)self.SEblock = CoordAtt(mid_channels,mid_channels)# self.SEblock = CAblock.CA_SA(mid_channels, mid_channels)# PW卷积 降维操作self.point_conv = Conv1x1BN(mid_channels, out_channels)# shortcut的使用判断if self.stride == 1:self.shortcut = Conv1x1BN(in_channels, out_channels)def forward(self, x):# DW卷积out = self.depth_conv(self.conv(x))# 当 use_se=True 时使用注意力机制if self.use_se:out = self.SEblock(out)# PW卷积out = self.point_conv(out)# 残差操作# 第一种: 只看步长,步长相同shape不一样的输入输出使用1x1卷积使其相加# out = (out + self.shortcut(x)) if self.stride == 1 else out# 第二种: 同时满足步长与输入输出的channel, 不使用1x1卷积强行升维out = (out + x) if self.stride == 1 and self.in_channels == self.out_channels else outreturn outclass MobileNetV3(nn.Module):def __init__(self, num_classes=8, type='large'):super(MobileNetV3, self).__init__()self.type = type# 224x224x3 conv2d 3 -> 16 SE=False HS s=2self.first_conv = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=2, padding=1),nn.BatchNorm2d(16),HardSwish(),)# torch.Size([1, 16, 112, 112])# MobileNetV3_Large 网络结构if type == 'large':self.large_bottleneck = nn.Sequential(# torch.Size([1, 16, 112, 112]) 16 -> 16 -> 16 SE=False RE s=1SEInvertedBottleneck(in_channels=16, mid_channels=16, out_channels=16, kernel_size=3, stride=1,activate='relu', use_se=False),# torch.Size([1, 16, 112, 112]) 16 -> 64 -> 24 SE=False RE s=2SEInvertedBottleneck(in_channels=16, mid_channels=64, out_channels=24, kernel_size=3, stride=2,activate='relu', use_se=False),# torch.Size([1, 24, 56, 56])   24 -> 72 -> 24 SE=False RE s=1SEInvertedBottleneck(in_channels=24, mid_channels=72, out_channels=24, kernel_size=3, stride=1,activate='relu', use_se=False),# torch.Size([1, 24, 56, 56])   24 -> 72 -> 40 SE=True RE s=2SEInvertedBottleneck(in_channels=24, mid_channels=72, out_channels=40, kernel_size=5, stride=2,activate='relu', use_se=True, se_kernel_size=28),# torch.Size([1, 40, 28, 28])   40 -> 120 -> 40 SE=True RE s=1SEInvertedBottleneck(in_channels=40, mid_channels=120, out_channels=40, kernel_size=5, stride=1,activate='relu', use_se=True, se_kernel_size=28),# torch.Size([1, 40, 28, 28])   40 -> 120 -> 40 SE=True RE s=1SEInvertedBottleneck(in_channels=40, mid_channels=120, out_channels=40, kernel_size=5, stride=1,activate='relu', use_se=True, se_kernel_size=28),# torch.Size([1, 40, 28, 28])   40 -> 240 -> 80 SE=False HS s=1SEInvertedBottleneck(in_channels=40, mid_channels=240, out_channels=80, kernel_size=3, stride=1,activate='hswish', use_se=False),# torch.Size([1, 80, 28, 28])   80 -> 200 -> 80 SE=False HS s=1SEInvertedBottleneck(in_channels=80, mid_channels=200, out_channels=80, kernel_size=3, stride=1,activate='hswish', use_se=False),# torch.Size([1, 80, 28, 28])   80 -> 184 -> 80 SE=False HS s=2SEInvertedBottleneck(in_channels=80, mid_channels=184, out_channels=80, kernel_size=3, stride=2,activate='hswish', use_se=False),# torch.Size([1, 80, 14, 14])   80 -> 184 -> 80 SE=False HS s=1SEInvertedBottleneck(in_channels=80, mid_channels=184, out_channels=80, kernel_size=3, stride=1,activate='hswish', use_se=False),# torch.Size([1, 80, 14, 14])   80 -> 480 -> 112 SE=True HS s=1SEInvertedBottleneck(in_channels=80, mid_channels=480, out_channels=112, kernel_size=3, stride=1,activate='hswish', use_se=True, se_kernel_size=14),# torch.Size([1, 112, 14, 14])  112 -> 672 -> 112 SE=True HS s=1SEInvertedBottleneck(in_channels=112, mid_channels=672, out_channels=112, kernel_size=3, stride=1,activate='hswish', use_se=True, se_kernel_size=14),# torch.Size([1, 112, 14, 14])  112 -> 672 -> 160 SE=True HS s=2SEInvertedBottleneck(in_channels=112, mid_channels=672, out_channels=160, kernel_size=5, stride=2,activate='hswish', use_se=True, se_kernel_size=7),# torch.Size([1, 160, 7, 7])    160 -> 960 -> 160 SE=True HS s=1SEInvertedBottleneck(in_channels=160, mid_channels=960, out_channels=160, kernel_size=5, stride=1,activate='hswish', use_se=True, se_kernel_size=7),# torch.Size([1, 160, 7, 7])    160 -> 960 -> 160 SE=True HS s=1SEInvertedBottleneck(in_channels=160, mid_channels=960, out_channels=160, kernel_size=5, stride=1,activate='hswish', use_se=True, se_kernel_size=7),)# torch.Size([1, 160, 7, 7])# 相比MobileNetV2,尾部结构改变,,变得更加的高效self.large_last_stage = nn.Sequential(nn.Conv2d(in_channels=160, out_channels=960, kernel_size=1, stride=1),nn.BatchNorm2d(960),HardSwish(),nn.AvgPool2d(kernel_size=7, stride=1),nn.Conv2d(in_channels=960, out_channels=1280, kernel_size=1, stride=1),HardSwish(),)# MobileNetV3_Small 网络结构if type == 'small':self.small_bottleneck = nn.Sequential(# torch.Size([1, 16, 112, 112]) 16 -> 16 -> 16 SE=False RE s=2SEInvertedBottleneck(in_channels=16, mid_channels=16, out_channels=16, kernel_size=3, stride=2,activate='relu', use_se=True, se_kernel_size=56),# torch.Size([1, 16, 56, 56])   16 -> 72 -> 24 SE=False RE s=2SEInvertedBottleneck(in_channels=16, mid_channels=72//2, out_channels=24, kernel_size=3, stride=2,activate='relu', use_se=False),# torch.Size([1, 24, 28, 28])   24 -> 88 -> 24 SE=False RE s=1SEInvertedBottleneck(in_channels=24, mid_channels=88//2, out_channels=24, kernel_size=3, stride=1,activate='relu', use_se=False),# torch.Size([1, 24, 28, 28])   24 -> 96 -> 40 SE=True RE s=2SEInvertedBottleneck(in_channels=24, mid_channels=96//2, out_channels=40, kernel_size=5, stride=2,activate='hswish', use_se=True, se_kernel_size=14),# torch.Size([1, 40, 14, 14])   40 -> 240 -> 40 SE=True RE s=1SEInvertedBottleneck(in_channels=40, mid_channels=240//2, out_channels=40, kernel_size=5, stride=1,activate='hswish', use_se=True, se_kernel_size=14),# torch.Size([1, 40, 14, 14])   40 -> 240 -> 40 SE=True RE s=1SEInvertedBottleneck(in_channels=40, mid_channels=240//2, out_channels=40, kernel_size=5, stride=1,activate='hswish', use_se=True, se_kernel_size=14),# torch.Size([1, 40, 14, 14])   40 -> 120 -> 48 SE=True RE s=1SEInvertedBottleneck(in_channels=40, mid_channels=120//2, out_channels=48, kernel_size=5, stride=1,activate='hswish', use_se=True, se_kernel_size=14),# torch.Size([1, 48, 14, 14])   48 -> 144 -> 48 SE=True RE s=1SEInvertedBottleneck(in_channels=48, mid_channels=144//2, out_channels=48, kernel_size=5, stride=1,activate='hswish', use_se=True, se_kernel_size=14),# torch.Size([1, 48, 14, 14])   48 -> 288 -> 96 SE=True RE s=2SEInvertedBottleneck(in_channels=48, mid_channels=288//2, out_channels=96, kernel_size=5, stride=2,activate='hswish', use_se=True, se_kernel_size=7),# torch.Size([1, 96, 7, 7])     96 -> 576 -> 96 SE=True RE s=1SEInvertedBottleneck(in_channels=96, mid_channels=576//2, out_channels=96, kernel_size=5, stride=1,activate='hswish', use_se=True, se_kernel_size=7),# torch.Size([1, 96, 7, 7])     96 -> 576 -> 96 SE=True RE s=1SEInvertedBottleneck(in_channels=96, mid_channels=576//2, out_channels=96, kernel_size=5, stride=1,activate='hswish', use_se=True, se_kernel_size=7),)# torch.Size([1, 96, 7, 7])# 相比MobileNetV2,尾部结构改变,,变得更加的高效self.small_last_stage = nn.Sequential(nn.Conv2d(in_channels=96, out_channels=576, kernel_size=1, stride=1),nn.BatchNorm2d(576),HardSwish(),nn.AvgPool2d(kernel_size=7, stride=1),nn.Conv2d(in_channels=576, out_channels=1280, kernel_size=1, stride=1),HardSwish(),)self.dorpout = nn.Dropout(0.5)self.classifier =nn.Linear(in_features=1280, out_features=num_classes)# self.init_params()def forward(self, x):x = self.first_conv(x)  # torch.Size([1, 16, 112, 112])if self.type == 'large':x = self.large_bottleneck(x)  # torch.Size([1, 160, 7, 7])x = self.large_last_stage(x)  # torch.Size([1, 1280, 1, 1])if self.type == 'small':x = self.small_bottleneck(x)  # torch.Size([1, 96, 7, 7])x = self.small_last_stage(x)  # torch.Size([1, 1280, 1, 1])x = x.reshape((x.shape[0], -1))  # torch.Size([1, 1280])x = self.dorpout(x)x = self.classifier(x)  # torch.Size([1, 5])return x
if __name__ == '__main__':models = MobileNetV3(8,type='large').to(device)input = torch.randn(size=[1, 3, 224, 224]).to(device)out = models(input)print(out.shape)torchsummary.summary(models,input_size=(3,224,224))

六、开始训练

import numpy
models = MobileNetV3(8,type='large').to('cuda')
# 设置优化器
optim = torch.optim.Adam(lr=0.001, params=models.parameters())
# 设置损失函数
loss_fn = torch.nn.CrossEntropyLoss().to('cuda')
bestacc=0
for epoch in range(20):train_data=0acc_data=0loss_data=0models.train()for batch_id, data in enumerate(train_dataloader):x_data,label=datapredicts=models(x_data.to('cuda'))loss=loss_fn(predicts, label.to('cuda'))acc=numpy.sum(numpy.argmax(predicts.cpu().detach().numpy(), axis=1)==label.numpy())train_data+=len(x_data)acc_data+=accloss_data+=loss# callbacks.step(loss)loss.backward()optim.step()optim.zero_grad()accuracy=acc_data/train_dataall_loss=loss_data/batch_idprint(f"train:eopch:{epoch} train: acc:{accuracy} loss:{all_loss.item()}",end=' ')if epoch+1:models.eval()test_data=0acc_data=0for batch_id, data in enumerate(test_dataloader):x_data,label=datapredicts=models(x_data.to('cuda'))acc=numpy.sum(numpy.argmax(predicts.cpu().detach().numpy(), axis=1)==label.numpy())test_data+=len(x_data)acc_data+=accaccuracy=acc_data/test_dataprint(f"test: acc:{accuracy}")if accuracy > bestacc:torch.save(models.state_dict(), "best.pth")bestacc = accuracyprint("Done")

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/97687.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【 构建maven工程时,配置了阿里云的前提下,依旧使用中央仓库下载依赖导致失败的问题!】

构建maven工程时,配置了阿里云的前提下,依旧使用中央仓库下载依赖导致失败的问题!!! 错误提示信息: Cannot download ZIP distribution from https://repo.maven.apache.org/maven2/org/apache/maven/apache-maven/3…

性能监控-微服务链路追踪skywalking搭建

中文文档:hong设置 (skyapm.github.cio) 参考:微服务链路追踪SkyWalking的介绍和部署_skywalking部署_技术闲聊DD的博客-CSDN博客 参考:链路追踪SkyWalking整合项目以及数据持久化_skywalking 持久化_技术闲聊DD的博客-CSDN博客 Liunx部署skywalking以…

云服务仿真:完全模拟 AWS 服务的本地体验 | 开源日报 No.45

localstack/localstack Stars: 48.7k License: NOASSERTION LocalStack 是一个云服务仿真器,可以在您的笔记本电脑或 CI 环境中以单个容器运行。它提供了一个易于使用的测试/模拟框架,用于开发云应用程序。主要功能包括: 在本地机器上完全…

Spring框架(中)

1、基于注解管理Bean: 1、开启组件扫描: Spring 默认不使用注解装配 Bean,因此我们需要在 Spring 的 XML 配置中,通过 context:component-scan 元素开启 Spring Beans的自动扫描功能。开启此功能后,Spring 会自动从扫…

transformer不同的包加载模型的结构不一样

AutoModel AutoModelForTokenClassification 结论: AutoModel加载的模型与AutoModelForTokenClassification最后一层是不一样的,从这个模型来看,AutoModelForTokenClassification加载的结果是对的 问题: 为什么AutoModel和Aut…

使用Docker安装JupyterHub

安装JupyterHub 拉取Jupyter镜像并运行容器 docker run -d -p 8000:8000 --name jupyterhub jupyterhub/jupyterhub jupyterhub # -d:后台运行 # -p 8000:8000:宿主机的8000端口映射容器中的8000端口 # --name jupyterhub:给运行的容器起名…

小谈设计模式(10)—原型模式

小谈设计模式(10)—原型模式 专栏介绍专栏地址专栏介绍 原型模式角色分类抽象原型(Prototype)具体原型(Concrete Prototype)客户端(Client)原型管理器(Prototype Manager…

创建GCP service账号并管理权限

列出当前GCP项目的所有service account 我们可以用gcloud 命令 gcloud iam service-accounts list gcloud iam service-accounts list DISPLAY NAME EMAIL DISABLED terraform …

苹果手机怎么备份所有数据?2023年iPhone 15数据备份常用的3种方法!

当苹果手机需要进行刷机、恢复出厂设置、降级iOS系统等操作时,我们需要将自己的iPhone数据提前进行备份。 特别是在苹果发布新iOS系统时,总有一些小伙伴因为升降级系统,而导致了重要数据的丢失。 iPhone中储存着重要的照片、通讯录、文件等数…

ahk系列——ahk_v2实现win10任意界面ocr

前言: 不依赖外部api接口,界面简洁,翻译快速,操作简单, 有网络就能用 、还可以把ocr结果非中文翻译成中文、同样可以识别中英日韩等60多个国家语言并翻译成中文,十分的nice 1、所需环境 windows10及其以上…

使用Windows系统自带的安全加密解密文件操作步骤详解

原以为安全加密的方法是加密压缩包,有的需要用软件加密文件,可每次想往里面修改或存放文件都要先解密,不用时,还得去加密,操作步骤那么多,那多不方便呀,这里讲讲用系统自带的BitLocker加密工具怎…

强化学习------Qlearning算法

简介 Q learning 算法是一种value-based的强化学习算法,Q是quality的缩写,Q函数 Q(state,action)表示在状态state下执行动作action的quality, 也就是能获得的Q value是多少。算法的目标是最大化Q值,通过在状态state下…

day10.8ubentu流水灯

流水灯 .text .global _start _start: 1.设置GPIOE寄存器的时钟使能 RCC_MP_AHB4ENSETR[4]->1 0x50000a28LDR R0,0X50000A28LDR R1,[R0] 从r0为起始地址的4字节数据取出放在R1ORR R1,R1,#(0x1<<4) 第4位设置为1STR R1,[R0] 写回2.设置PE10管脚为输出模式 G…

Android多线程学习:线程

一、概念 进程&#xff1a;系统资源分配的基本单位&#xff0c;进程之间相互独立&#xff0c;不能直接访问其他进程的地址空间。 线程&#xff1a;CPU调度的基本单位&#xff0c;线程之间共享所在进程的资源&#xff0c;包括共享内存&#xff0c;公有数据&#xff0c;全局变量…

10.8c++作业

#include <iostream>using namespace std; class Rect {int width; //宽int height; //高 public://初始化函数void init(int w,int h){widthw;heighth;}//更改宽度void set_w(int w){widthw;}//更改高度void set_h(int h){heighth;}//输出矩形周长和面积void show(){co…

ASO优化之应用程序图标的设计技巧

用户在App Store页面上&#xff0c;首先看到的是我们的移动应用程序图标&#xff0c;所以应用图标的设计至关重要。如果这不能引起用户的注意&#xff0c;他们可能不会费心去了解有关我们的应用的更多信息。 1、脱颖而出的重要性。 具有附加价值&#xff0c;如果做得好&#x…

bigemap在林业勘测规划设计行业的一些应用

选择Bigemap的原因&#xff1a; 主要注重影像的时效性&#xff0c;软件的影像时效性比其他的更新快&#xff0c;更清晰。 使用场景&#xff1a; 1.林业督查&#xff0c;主要是根据国家下发的图斑&#xff0c;结合测绘局的影像以及bigemap的较新影像对比去年和今年的林地变化。…

MySQL——使用mysqldump备份与恢复数据

目录 1.mysqldump简介 2.mysqldump备份数据 2.1 备份所有数据库 2.2 备份一个/多个数据库 2.3 备份指定库中的指定表 3.mysqldump恢复数据 3.1 恢复数据库 3.2 恢复数据表 1.mysqldump简介 mysqldump命令可以将数据库中指定或所有的库、表导出为SQL脚本。表的结构和表中…

Survey on Cooperative Perception in an Automotive Context 论文阅读

论文链接 Survey on Cooperative Perception in an Automotive Context 0. Abstract 本文就协同基础设施领域提供相关环境的调查回顾了感知中涉及的主要模块&#xff1a;定位&#xff0c;目标检测和跟踪&#xff0c;地图生成提供了协同感知的 SWOT 1. Intro 无人驾驶汽车的背…

力扣 -- 647. 回文子串

解题步骤&#xff1a; 参考代码&#xff1a; class Solution { public:int countSubstrings(string s) {int ns.size();vector<vector<bool>> dp(n,vector<bool>(n));//无需初始化int ret0;//一定要从下往上填写每一行for(int in-1;i>0;i--){//每一行的i…