cmip6数据处理之降尺度

专题一 CMIP6中的模式比较计划

1.1 GCM介绍全球气候模型(Global Climate Model, GCM),也被称为全球环流模型或全球大气模型,是一种用于模拟地球的气候系统的数值模型。这种模型使用一系列的数学公式来描述气候系统的主要组成部分,包括大气、海洋、冰冻土壤以及地表和海洋表面的生物地理过程。

GCM在空间和时间上的精度可以根据需求进行调整,通常的分辨率可以从几百公里到几公里,时间步长可以从几分钟到几小时。

阅读原文

1.2 CMIP介绍

CMIP,全称为气候模型比较计划(Climate Model Intercomparison Project),是由世界气候研究计划(World Climate Research Programme,WCRP)发起的一个国际合作项目。其目的是通过收集和比较各种全球气候模型(GCMs)的模拟结果,以理解过去的、现在的和未来的气候变化。

1.3相关比较计划介绍

专题二 数据下载

2.1方法一:手动人工

利用官方网站

2.2方法二:自动利用Python的命令行工具

2.3方法三:半自动购物车

利用官方网站

2.4 裁剪netCDF文件

基于QGIS和CDO实现对netCDF格式裁剪

QGIS中的操作

裁剪效果

2.5 处理日期非365天的GCM以BCC为例处理

专题三 基础知识

3.1 Python基础

Python 是一种高级的、解释型的编程语言,其语法简洁明了,适合快速开发。在大气科学中,Python 以其丰富的科学计算和数据分析库备受青睐。这些库如 Numpy,Scipy,Pandas 和 Xarray 等,为处理大气科学数据提供了强大的支持。

●Numpy:Numpy 是 Python 中用于科学计算的核心库,提供了高性能的多维数组对象及相关工具。对于大气科学数据的处理,例如温度、压力、风速等通常都会使用到多维数组。Numpy 提供了丰富的函数库来处理这些数组,包括数学运算、逻辑运算、形状操作、排序、选择等操作。

●Scipy:Scipy 是基于 Python 的开源软件,用于科学计算中的数值积分和微分方程数值求解,线性代数,优化,信号处理等。在大气科学中,例如对气温、气压等数据进行傅立叶分析,求解大气动力学中的偏微分方程等,都可以使用 Scipy 来实现。

●Pandas:Pandas 是基于 Numpy 构建的,使数据清洗和分析工作变得更快更简单。Pandas 是专门为处理表格和混杂数据设计的,而 Numpy 更适合处理统一的数值数组数据。在大气科学中,例如对气象站的观测数据进行时间序列分析,处理混合类型的气象数据,以及对数据进行清洗、筛选和统计等操作,Pandas 都是非常有用的工具。

3.2 CDO基本操作

CDO(Climate Data Operator)是大气科学领域常用的一款气候和气象数据处理工具。它是一个功能强大的命令行工具,可以处理和分析格网和无格网数据,支持多种数据格式,包括netCDF、GRIB、SERVICE, EXTRA和IEG。CDO提供了一套丰富的函数库,可以用来进行各种常见的数据操作,

包括:●基础操作:如选择、提取和修改变量、维度、属性等。

●数值操作:如四则运算、统计运算、函数运算等。例如,可以计算数据的平均值、最大值、最小值、标准差等。●空间操作:如重新格网、插值、汇总、选择和提取地理区域等。

●时间操作:如选择和提取时间周期、计算时间平均或累积等。

3.3 Xarray的基本操作

Xarray 是一个用于处理多维数组数据的 Python 库,它在 numpy 的基础上提供了一系列用于数据操作和分析的高级接口,并能很好地支持 netCDF 这类基于网络的自描述数据格式,因此在大气科学和气候科学中被广泛使用。

Xarray 的主要特点包括:

●基于标签的数据操作:Xarray 使用维度名称而不是轴编号进行数据选择和操作,极大地增强了代码的可读性和可维护性。

●自动对齐数据:在进行运算时,Xarray 可以自动对齐不同数据集的变量(variables)和坐标(coordinates)。●分组运算和数据透视:Xarray 支持类似于 pandas 的分组运算(group-by)和数据透视(pivot)功能。

●l/O操作:Xarray 对多种数据格式提供了非常好的支持,尤其是对 netCDF 数据的读取和写入。

专题四 单点降尺度

4.1 Delta方法

Delta方法(Delta Change Method),也称为增量方法或差值方法,是气候模型降尺度的一种简单而常用的方法。该方法假设气候变化的幅度在未来相对于历史期间将保持恒定。因此,对于某一具体的未来时段,可以通过计算过去和现在气候的差值(即 delta),并将其应用到未来的气候预测上,来预估未来的气候状态。该方法可以应用于温度和降水等气候变量的预测。

4.2统计订正

概率分布函数(Probability Density Function, PDF)的订正。

这种方法的基本思想是:通过修改大尺度模型输出的PDF,使其更符合观测数据的PDF,从而获得更准确的小尺度气候变量。

4.3机器学习方法

降尺度是将粗尺度的全球气候模型(GCM)输出数据转换为地面更精细尺度的过程。机器学习方法因其在处理复杂模式识别和高维数据问题的强大能力,已经被成功应用于降尺度技术。在气候学领域,机器学习已被成功用于将粗尺度的气候模型输出(例如,温度和降水)与其他环境变量(例如,地形和土壤类型)关联,以获得更高分辨率的气候预测。

实现步骤

●建立特征

● 建立模型

●模型评估

4.4多算法集成方法多算法的集成

贝叶斯模型平均 (Bayesian Model Averaging, BMA)

贝叶斯模型平均是一种统计方法,用于根据观察数据确定各种模型的后验概率。与选择一个最好的模型相反,贝叶斯模型平均考虑了所有可能的模型,然后根据每个模型的后验概率进行加权平均。Python+pymc3实现

专题五 统计方法的区域降尺度

5.1 Delta方法

5.2 基于概率订正方法的

专题六 基于WRF模式的动力降尺度

动态降尺度通常使用更高分辨率的区域气候模型(RCM),这些模型在更大尺度的全球气候模型驱动下运行。其中,WRF(Weather Research and Forecasting)模型是目前使用最广泛的区域气候模型之一。 WRF模型是一个灵活的、大气环流模型,适合用于各种尺度的气候和气象研究。它的主要特点是具有高分辨率(可达到几公里),并且可以考虑到许多重要的地球物理过程,如云的形成、降水、陆面过程、海洋过程、边界层过程、辐射、化学过程等。

6.1制备CMIP6的WRF驱动数据

利用cdo工具对gcm的输出文件进行重新编码制备wrf的驱动数据

6.1.1针对压力坐标系的数据制备

6.1.2针对sigma坐标系GCM数据制备

6.1.3 WPS处理

6.2 WRF模式运行

6.3 模式的后处理

● 提取变量

●变量的统计

●变量的可视化

专题七 典型应用案例-气候变化1

7.1针对风速进行降尺度

7.2针对短波辐射降尺度

专题八 典型应用案例-气候变化2ECA极端气候指数计算

ECA (European Climate Assessment) 是欧洲的一个气候评估项目,其在全球范围内发布了一系列的极端气候事件指数。这些指数被广泛用于气候变化研究,特别是在研究极端天气和气候事件方面。

ECA 的极端气候指数主要包括以下几类:

温度指数:这些指数主要用于度量温度的极端情况,例如热日数(TX90p,年中最高气温超过90百分位数的天数)、冷日数(TN10p,年中最低气温低于10百分位数的天数)、热夜数(TN90p,年中最低气温超过90百分位数的天数)、冷夜数(TN10p,年中最低气温低于10百分位数的天数)等。

降水指数:这些指数主要用于度量降水的极端情况,例如最大连续5日降水量(RX5day)、大于或等于10mm的降水日数(R10mm)、大于或等于20mm的降水日数(R20mm)、降水强度(SDII)等。这些指数对于理解和预测极端气候事件的影响非常重要,因为极端气候事件(如热浪、干旱、洪水等)往往比平均气候变化带来更大的影响。因此,对这些指数的研究有助于我们更好地理解和适应气候变化。

lConsecutive dry days index

lConsecutive frost days index per time period

lConsecutive summer days index per time period

lConsecutive wet days index per time period

专题九 典型应用案例-生态领域预估生长季开始和结束时间

1、建立气象数据与VIPPHEN遥感物候数据中生长季开始和结束

2、在未来气候情景下预估生长季长季开始、结束和长度

专题十 典型应用案例-水文、生态模式数据

● SWAT数据制备

●Biome-BGC数据

Biome-BGC是利用站点描述数据、气象数据和植被生理生态参数,模拟日尺度碳、水和氮通量的模型,其研究的空间尺度可以从点尺度扩展到陆地生态系统。案例中以单点模拟方式制备CMIP6的气象数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/95510.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

arm 汇编基础指令

实现1-100求和 .text .globl _start_start:mov r0, #1 i&#xff0c;i1mov r1, #100 条件变量i<100mov r2, #0 sumLoop: 循环cmp r0,r1 比较r0和r1的大小bhi stop 当r0>r1时&#xff0c;跳到stop标签a…

STM32G070RBT6-MCU温度测量(ADC)

1、借助STM32CubeMX生成系统及外设相关初始化代码。 在以上配置后就可以生成相关初始化代码了。 /* ADC1 init function */ void MX_ADC1_Init(void) {/* USER CODE BEGIN ADC1_Init 0 *//* USER CODE END ADC1_Init 0 */ADC_ChannelConfTypeDef sConfig {0};/* USER COD…

十天学完基础数据结构-第八天(哈希表(Hash Table))

哈希表的基本概念 哈希表是一种数据结构&#xff0c;用于存储键值对。它的核心思想是将键通过哈希函数转化为索引&#xff0c;然后将值存储在该索引位置的数据结构中。 哈希函数的作用 哈希函数是哈希表的关键部分。它将输入&#xff08;键&#xff09;映射到哈希表的索引位…

全志ARM926 Melis2.0系统的开发指引⑧

全志ARM926 Melis2.0系统的开发指引⑧ 编写目的12.5. 应用程序编写12.5.1. 简单应用编写12.5.1.1. 注册应用12.5.1.2. 创建管理窗口12.5.1.3. 实现管理窗口消息处理回调函数12.5.1.4. 创建图层12.5.1.5. 创建 framewin12.5.1.6. 实现 framewin 消息处理回调函数 -. 全志相关工具…

R语言教程课后习题答案(持续更新中~~)

R语言教程网址如下 https://www.math.pku.edu.cn/teachers/lidf/docs/Rbook/html/_Rbook/index.html 目录 source()函数可以运行保存在一个文本文件中的源程序 R向量下标和子集 数值型向量及其运算 日期功能 R因子类型 source()函数可以运行保存在一个文本文件中的源程序…

H5移动端购物商城系统源码 小型商城全新简洁风格全新UI 支持易支付接口

一款比较简单的 H5 移动端购物商城系统源码&#xff0c;比较适合单品商城、小型商城使用。带有易支付接口。 源码下载&#xff1a;https://download.csdn.net/download/m0_66047725/88391704 源码下载2&#xff1a;评论留言或私信留言

保险业SAP转型:奠定坚实的基础

保险业面临着许多新的挑战&#xff1a;从新的市场参与者到人工智能和物联网。如何在这种快节奏的现实中满足客户的需求&#xff0c;降低成本&#xff0c;加速增长&#xff1f;首先&#xff0c;让我们考虑一下数字化转型成功是什么样子的&#xff0c;以及如何实现它。在这篇文章…

克服网络安全压力:如何掌控无限的云数据

管理云中的数字风险比以往任何时候都更加重要。数字化转型引发的云数据呈指数级增长&#xff0c;为安全分析师创造了一个更大的威胁环境。随着威胁行为者继续危害组织最敏感的数据&#xff0c;这一挑战将会加剧。 预计未来五年全球网络犯罪成本将激增&#xff0c;从 2022 年的…

强化学习实践(二)Gym安装及环境搭建(代码可运行)

1.准备工作 优先选用conda&#xff0c;conda不仅可以安装python&#xff0c;也是环境管理的工具&#xff0c;我们可以通过conda创建python环境&#xff0c;每个环境之间是相互独立&#xff0c;这样不同的环境可以使用不同版本的python&#xff0c;不同版本的开发包&#xff0c;…

mysql技术文档--阿里巴巴java准则《Mysql数据库建表规约》--结合阿丹理解尝试解读--国庆开卷

阿丹&#xff1a; 国庆快乐呀大家&#xff01; 在项目开始前一个好的设计、一个健康的表关系&#xff0c;不仅会让开发变的有趣舒服&#xff0c;也会在后期的维护和升级迭代中让系统不断的成长。那么今天就认识和解读一下阿里的准则&#xff01;&#xff01; 建表规约 表达是…

unity脚本_Vector3 c#

接下来学习 相对世界坐标 首先我们给场景物体一个空物体 修改新建空物体名字为GameObjectFather 修改GameObjectFather坐标 修改GameObject2坐标 然后将GameObjectFahter设置成GameObject2的父物体 我们观察到子物体的坐标改变了但是 运行显示的相对世界坐标this.transform.po…

基于蝴蝶优化的BP神经网络(分类应用) - 附代码

基于蝴蝶优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于蝴蝶优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.蝴蝶优化BP神经网络3.1 BP神经网络参数设置3.2 蝴蝶算法应用 4.测试结果&#xff1a;5.M…

Apollo Planning2.0决策规划算法代码详细解析 (2): vscode gdb单步调试环境搭建

前言: apollo planning2.0 在新版本中在降低学习和二次开发成本上进行了一些重要的优化,重要的优化有接口优化、task插件化、配置参数改造等。 GNU symbolic debugger,简称「GDB 调试器」,是 Linux 平台下最常用的一款程序调试器。GDB 编译器通常以 gdb 命令的形式在终端…

MySQL:数据库的物理备份和恢复-冷备份(3)

介绍 物理备份&#xff1a; 直接复制数据文件进行的备份 优点&#xff1a;不需要其他的工具&#xff0c;直接复制就好&#xff0c;恢复直接复制备份文件即可 缺点&#xff1a;与存储引擎有关&#xff0c;跨平台能力较弱 逻辑备份&#xff1a; 从数据库中导出数据另存而进行的备…

C++树详解

树 树的定义 树&#xff08;Tree&#xff09;是n&#xff08;n≥0&#xff09;个结点的有限集。n0时称为空树。在任意一颗非空树中&#xff1a;①有且仅有一个特定的称为根&#xff08;Root&#xff09;的结点&#xff1b;②当n>1时&#xff0c;其余结点可分为m&#xff08…

【C语言经典100例题-70】求一个字符串的长度(指针)

代码 使用指针来遍历字符串&#xff0c;直到遇到字符串结尾的空字符\0为止&#xff0c;统计字符数量即为字符串长度。 #include<stdio.h> #define n 20 int getlength(char *a) {int len 0;while(*a!\0){len;a;}return len; } int main() {char *arr[n] { 0 };int l…

将3D MAX设计模型导入NX1988

将3D MAX设计模型导入NX1988 概述导入流程导出喜欢的模型对模型进行修改模型贴图 概述 一般家装设计都不会用NX之类的产品设计软件&#xff0c;也没有通用的文件格式可以互相转换&#xff0c;本文的目的是将从网上下载的一些设计较好的3D MAX模型导入到NX软件中借用&#xff0…

导出视频里的字幕

导出视频里的字幕 如何利用剪映快速提取并导出视频里的字幕 https://jingyan.baidu.com/article/c35dbcb0881b6fc817fcbcd2.html 如何快速提取视频中的字幕&#xff1f;给大家介绍一种简单高效又免费的提取方法。需要利用到“剪映”&#xff0c;以下是具体的操作步骤和指引&a…

【机器学习】训练集/验证集/测试集释疑

文章目录 序言1. 训练集、验证集、测试集是什么2. 为什么需要验证集3. 验证集是必须的吗4. 验证集和测试集上的表现会不同吗5. 如何从Train/Test Set划分Validation Set6. 训练集、验证集和测试集的比例怎么设置7. 模型表现不好时测试集可以反复使用来调整模型吗8. 训练集、验证…

【C++】AVL树 红黑树

AVL树 AVL树也是二叉搜索树的一种。因为对于普通的二叉搜索树&#xff0c;当插入的数据在有序或接近有序的情况下&#xff0c;二叉搜索树很可能退化成单支树&#xff0c;导致查找效率低下。而AVL树就很好的解决了这个问题。 首先&#xff0c;AVL树是一棵二叉搜索树。同时对于A…