数学建模Matlab之评价类方法

大部分方法来自于http://t.csdnimg.cn/P5zOD

层次分析法

层次分析法(Analytic Hierarchy Process, AHP)是一种结构决策的定量方法,主要用于处理复杂问题的决策分析。它将问题分解为目标、准则和方案等不同层次,通过成对比较和计算权重值来实现决策问题的定量分析。

主要步骤

  1. 建立层次结构模型:

    • 首先确定决策问题的目标、准则和方案等不同层次,并构建层次结构模型。这个在代码中是没有的,需要提前进行。
  2. 成对比较构建判断矩阵:

    • 通过成对比较各准则和方案的相对重要性,构建判断矩阵。
    • 在层次分析法代码示例中,判断矩阵A由用户输入。
  3. 计算权重值:

    • 使用特征值方法计算判断矩阵的权重值
    • 示例代码中,通过求A的最大特征值B和对应的特征向量C来计算权重值Q
  4. 一致性检验:

    • 进行一致性检验来确保判断矩阵的合理性。
    • 代码中,使用一致性指标CICR进行检验,如果CR<0.10,判断矩阵通过一致性检验。
  5. 结果输出:

    • 输出各向量的权重向量Q,表示每个准则或方案的相对重要性。
    • 如果判断矩阵未通过一致性检验,需要对判断矩阵重新构造。

代码示例 

clc;
clear;
% 判断矩阵A,必须保证判断矩阵是互反的。每个元素 A(i, j) 表示第 i 个指标相对于第 j 个指标的重要性。
A= [1 3 5 51/3 1 3 51/5 1/3 1 31/5 1/5 1/3 1];
[m,n]=size(A);                     %获取指标个数%RI 是一个随机一致性指数,它是用来进行一致性检验的。每个值 RI(n) 对应于一个n阶判断矩阵的一致性检验的标准值。
% RI 数组中只包含了11个值,这是因为通常情况下,判断矩阵的阶数不会超过11。如果有更多的指标,您可能需要查找或计算相应阶数的 RI 值。
RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51];
R=rank(A);                         %求判断矩阵的秩
[V,D]=eig(A);                      %求判断矩阵的特征值和特征向量,V特征值,D特征向量;
tz=max(D);
B=max(tz);                         %最大特征值
[row, col]=find(D==B);             %最大特征值所在位置
C=V(:,col);                        %对应特征向量
CI=(B-n)/(n-1);                    %计算一致性检验指标CI
CR=CI/RI(1,n);
%代码进行一致性检验来确保判断矩阵的合理性。
%如果一致性检验通过(即 CR < 0.10),则继续计算权重;否则,需要重新构造判断矩阵。
if CR<0.10disp('CI=');disp(CI);disp('CR=');disp(CR);disp('对比矩阵A通过一致性检验,各向量权重向量Q为:');Q=zeros(n,1);for i=1:nQ(i,1)=C(i,1)/sum(C(:,1)); %特征向量标准化endQ'                              %输出权重向量
elsedisp('对比矩阵A未通过一致性检验,需对对比矩阵A重新构造');
end
sc = Q';

其中,有以下注意事项:

1.判断矩阵A,必须保证判断矩阵是互反的

2.RI 是一个随机一致性指数,它是用来进行一致性检验的。RI 数组中只包含了11个值,这是因为通常情况下,判断矩阵的阶数不会超过11。如果有更多的指标,可能需要查找或计算相应阶数的 RI 值。

3.数模论文中只要使用到了层次分析法,就必须画层次结构图,无论文章是否需要压缩篇幅,这和层次分析法的使用绑在一起。


 熵权法

熵权法同样是一种决策分析的方法,用于确定各个决策指标的权重。该方法主要依赖于信息熵的概念。在决策分析中,信息熵用来度量某个决策指标的离散程度。如果一个指标的变化越大(即更离散),那么它应该被赋予更大的权重。熵权法通过计算每个指标的信息熵来确定各个指标的权重。

 主要步骤

  1. 非负数化和归一化处理:

    • 代码中,首先进行了对原始数据的非负数化和归一化处理(x(:,i)=(x(:,i)-min(x(:,i)))/(max(x(:,i))-min(x(:,i)))+1),使得所有数据值介于1和2之间。
  2. 计算概率值:

    • 然后,计算每个数据点在其所在列的比例(p(i,j)=x(i,j)/sum(x(:,j))),这可以被看作是数据点的概率值。
  3. 计算信息熵:

    • 接下来,使用计算得到的概率值来计算每列(即每个决策指标)的信息熵(E(j)=-k*sum(e(:,j)))。信息熵被用来度量一个随机变量的不确定性,即决策指标的离散程度。
  4. 计算差异系数:

    • 之后,计算每个指标的差异系数(d=1-E)。差异系数用来度量一个指标与其他指标的差异程度。
  5. 计算权重:

    • 最后,计算每个决策指标的权重(w(j)=d(j)/sum(d)),这个权重代表了该指标在决策分析中的重要性。
  6. 计算综合分数:

    • 使用计算得到的权重来计算每个数据点的综合分数(score(i,1)=sum(x(i,:).*w)

对于计算综合分数,可能说的比较模糊,作者举个例子,假设我们有以下简化的数据和权重:

x = [
1 2
3 4
] %数据w = [0.3, 0.7] % 权重

第一个数据点(也就是行向量[1,2],在现实生活中可能代表某一个样本,分量值相当于熵权法的指标值,我们就是在求得各指标的权重后通过权重+样本的指标值求得样本的综合分数的)的综合分数计算如下:

score(1)=(1×0.3)+(2×0.7)=1.7score(1)=(1×0.3)+(2×0.7)=1.7

第二个数据点的综合分数计算如下:

score(2)=(3×0.3)+(4×0.7)=3.7score(2)=(3×0.3)+(4×0.7)=3.7

从而得到综合分数数组 score = [1.7, 3.7]

通过这种方法,可以利用计算出的权重对每个数据点进行评分,从而进行进一步的分析和决策。

代码示例

x = [
2.41	52.59	0	9.78	1.17
1.42	53.21	0	6.31	1.63
4.71	35.16	1	9.17	3.02
14.69	15.16	2.13	10.35	7.97
0.94	72.99	0	7.39	0.61
1.43	72.62	0	8.16	0.51
2.21	67.5	0	9.84	0.85
3.79	51.21	0	12.95	1.43
1.23	85.09	3.97	4.08	0.13
1.71	82.07	2.88	4.97	0.33
3.63	66.9	3.18	8.57	0.71
5.72	49.77	3.44	10.52	1.83
1.49	79.51	6.53	2.58	0.27
1.66	81.44	5.18	2.74	0.36
2.41	76.32	5.88	4.13	0.54
4.42	59.65	7.64	8.38	1.02
3.27	88.42	3.36	2.85	0.14
11.27	70.05	5.77	6.07	0.19
13.18	62.45	5.66	7.85	0.74
15.83	56.28	2.92	9.97	1.14
11.59	80.23	1.04	3.64	0.2
26.67	55.7	2.02	8.13	0.38
28.51	51.07	2.12	9.66	1.46
3.69	87.26	0	3.12	0.18
3.27	84.43	0	5.43	0.31
3.98	79.99	0	6.62	0.57
1.59	86.5	0	6.14	0.14
4.31	82.26	0	4.71	0.2
4.6	72.79	0	8.27	0.52
4.99	81.93	0	7.52	0.16
4.66	75.09	0	10.24	0.33
5.08	61.02	1.57	15.7	0.53
12.49	83.06	0	1.2	1.06
4.67	92.77	0	0.33	0.58
5.8	90.32	0	0.91	0.8
97.76	0	0	0	2.14
94.75	0	0	1.42	2.83
93.76	0	0	1.18	3.24
3.48	81.43	7.45	1.33	0.14
4.2	80	5.3	2.21	0.18
8.83	71.28	5.34	2.9	0.43
5.39	79.6	6.87	2.64	0.31
7.67	74.74	5.91	3.4	0.66
19.65	55.4	4.87	6.14	1.2
2.63	90.74	3.18	1.42	0.14
2.8	89.7	2.85	1.96	0.14
4.07	85.12	3.43	3.52	0.25
5.7	83.4	0	4.48	0.1
4.03	81.35	0	6.18	0.19
4.11	73.45	0	9.71	0.45
2.78	89.53	0	4.23	0.2
3.92	83.2	0	7.59	0.32
5.21	71.37	3.09	10.29	0.72
18.98	76.81	0	1.05	0.31
19.79	73.56	0	0.88	0.42
19.86	70.07	0	1.72	0.74
16.61	67.57	3.77	3.15	1.16
6.91	82.18	4.19	0	0.1
2.93	83.06	1.93	5.14	0.32
8.47	78.11	4.04	4.02	0.31
12.29	70.48	3.89	4.32	0.69
3.98	84.81	4.76	1.97	0.18
7.67	78.13	4.22	4.57	0.35
14.04	66.89	4.41	6.27	0.47
14.62	59.29	5.28	8.35	0.77
1.97	85.16	4.87	3.27	0.23
2.16	86.83	3.82	2.25	0.15
4.81	74.9	5.05	5.97	0.5
7.44	57.98	6.75	10.73	1.04
2.04	86.01	4.79	2.95	0.13
3.49	79.79	5.67	4.28	0.15
6.47	68.02	6.71	5.74	0.2
7.94	59.12	7.14	5.93	1.42
];[m,n]=size(x);
lamda=ones(1,n); % 人为修权,1代表不修改计算后的指标权重
for i=1:nx(:,i)=(x(:,i)-min(x(:,i)))/(max(x(:,i))-min(x(:,i)))+1; % 对原始数据进行非负数化、归一化处理,值介于1-2之间
end
for i=1:mfor j=1:np(i,j)=x(i,j)/sum(x(:,j));end
end
k=1/log(m);
for i=1:mfor j=1:nif p(i,j)~=0e(i,j)=p(i,j)*log(p(i,j));elsee(i,j)=0;endend
end
for j=1:nE(j)=-k*sum(e(:,j));
end
d=1-E;
for j=1:nw(j)=d(j)/sum(d);% 指标权重计算
end
for j=1:nw(j)=w(j)*lamda(j)/sum(w.*lamda);% 修改指标权重
end
for i=1:mscore(i,1)=sum(x(i,:).*w);% 计算综合分数% 一个数据点对应矩阵每一行数据,根据大量的数据点,确定其权重,然后计算每一个数据点的综合得分(数据点本例中对应四个指标值,分别利用权重求得综合得分
end
disp('各指标权重为:')
disp(w) %权重越大,该指标在决策分析中的重要性越高。
disp('各项综合分数为:')
disp(score) %每个数据点的综合分数。综合分数可以被用来进行进一步的分析或决策。
Out = mean (score,1)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/95276.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux基础知识之文件系统 df/du/fsck/dump2fs

du du [选项][目录或者文件名] -a 显示每个子文件等磁盘占用量&#xff0c;默认只统计子目录的磁盘占用量 -h 使用习惯单位显示磁盘占用量&#xff0c;如KB&#xff0c;MB或者GB -s 统计总占用量&#xff0c;不列出子目录和文件占用量 面向文件 du -a 16 ./.DS_Store 8 ./requi…

js——深拷贝和浅拷贝

深拷贝和浅拷贝是只针对Object和Array这样的引用数据类型的。对于基本数据类型&#xff0c;例如字符串、数字、布尔值等&#xff0c;由于它们是按值传递的&#xff0c;所以不存在深拷贝和浅拷贝的问题。 深拷贝 将对象从内存中完整拷贝出来&#xff0c;从堆内存中开辟一个新的…

7-2 图着色问题

输入样例&#xff1a; 6 8 3 2 1 1 3 4 6 2 5 2 4 5 4 5 6 3 6 4 1 2 3 3 1 2 4 5 6 6 4 5 1 2 3 4 5 6 2 3 4 2 3 4 输出样例&#xff1a; Yes Yes No No idea 注意合理的方案需满足&#xff1a;用到的颜色数 给定颜色数 solution #include <cstdio> #include &l…

Linux系统编程系列之线程池

Linux系统编程系列&#xff08;16篇管饱&#xff0c;吃货都投降了&#xff01;&#xff09; 1、Linux系统编程系列之进程基础 2、Linux系统编程系列之进程间通信(IPC)-信号 3、Linux系统编程系列之进程间通信(IPC)-管道 4、Linux系统编程系列之进程间通信-IPC对象 5、Linux系统…

三川智控定时控制开关灯

三川智控定时控制开关灯 代码使用命令行模式web模式定时 代码 配置文件 config.env client_id100002 client_secret123456 username123456 password123456 apihttp:/aaa.abc.com:88/<?php class Single {protected $config;public function __construct(){// 从 config.e…

PyTorch入门之【tensor】

目录 tensor的创建tensor的相关信息tensor的运算 tensor的创建 1.手动创建 import torch test1torch.tensor([1,2,3])#一维时为向量 test2torch.tensor([[1,2,3]])#二维时为矩阵 test3torch.tensor([[[1,2,3]]])#三维及以上统称为tensor print(test1) print(test2) print(tes…

Python---类的定义和使用语法

定义&#xff1a; # 类的定义和使用语法 """ class 类名称: # 定义类类的属性(成员变量)类的行为(成员方法) 对象 类名称() # 创建对象 对象.类的属性 # 使用 对象.类的行为 # 使用 """# 成员方法的定义语法 #…

容器安全检测工具KubeHound使用

目录 前言 安装 下载kubehound 启动kubehound后端服务 连接服务器 参考 前言 Kubernetes集群攻击路径AES工具 安装

rust cargo

一、cargo是什么 Cargo是Rust的构建工具和包管理器。 Cargo除了创建工程、构建工程、运行工程等功能&#xff0c;还具有下载依赖库、编译依赖等功能。 真正编写程序时&#xff0c;我们不直接用rustc&#xff0c;而是用cargo。 二、使用cargo &#xff08;一&#xff09;使用…

【RP-RV1126】烧录固件使用记录

文章目录 烧录完整固件进入MASKROM模式固件烧录升级中&#xff1a;升级完成&#xff1a; 烧录部分进入Loader模式选择文件切换loader模式 烧录完整固件 完整固件就是update.img包含了所有的部件&#xff0c;烧录后可以直接运行。 全局编译&#xff1a;./build.sh all生成固件…

TCP端口崩溃,msg:socket(): Too many open files

一、现象 linux系统中运行了一个TCP服务器&#xff0c;该服务器监听的TCP端口为10000。但是长时间运行时发现该端口会崩溃&#xff0c;TCP客户端连接该端口会失败&#xff1a; 可以看到进行三次握手时&#xff0c;TCP客户端向该TCP服务器的10000端口发送了SYN报文&#xff0c;…

leetcode做题笔记162. 寻找峰值

峰值元素是指其值严格大于左右相邻值的元素。 给你一个整数数组 nums&#xff0c;找到峰值元素并返回其索引。数组可能包含多个峰值&#xff0c;在这种情况下&#xff0c;返回 任何一个峰值 所在位置即可。 你可以假设 nums[-1] nums[n] -∞ 。 你必须实现时间复杂度为 O(…

(二)正点原子STM32MP135移植——TF-A移植

目录 一、TF-A概述 二、编译官方代码 2.1 解压源码 2.2 打补丁 2.3 编译准备 &#xff08;1&#xff09;修改Makfile.sdk &#xff08;2&#xff09;设置环境变量 &#xff08;3&#xff09;编译 三、移植 3.1 复制官方文件 3.2 修改电源 3.3 修改TF卡和emmc 3.4 添…

【面试HOT100】哈希双指针滑动窗口

系列综述&#xff1a; &#x1f49e;目的&#xff1a;本系列是个人整理为了秋招面试的&#xff0c;整理期间苛求每个知识点&#xff0c;平衡理解简易度与深入程度。 &#x1f970;来源&#xff1a;材料主要源于LeetCodeHot100进行的&#xff0c;每个知识点的修正和深入主要参考…

【数据结构与算法】树、二叉树的概念及结构(详解)

前言: &#x1f4a5;&#x1f388;个人主页:​​​​​​Dream_Chaser&#xff5e; &#x1f388;&#x1f4a5; ✨✨专栏:http://t.csdn.cn/oXkBa ⛳⛳本篇内容:c语言数据结构--树以及二叉树的概念与结构 目录 一.树概念及结构 1.树的概念 1.1树与非树 树的特点&#xff1…

对象数组去重

针对去重问题&#xff0c;有这么几种解决方式&#xff0c;如Set&#xff0c;for循环遍历属性值等。 问题如下&#xff1a; // 对象数组去重&#xff0c;只要对象的所有属性值相同&#xff0c;则表示相同对象。 const arr [{ a: 1, b: 2 },{ b: 2, a: 1 },{ a: 1, b: 2, c: {…

计算机网络---TCP/UDP

TCP/UDP 1、TCP三次握手 四次挥手? TCP是一种面向连接的、可靠的字节流服务。在建立TCP连接时,需要进行三次握手,而在关闭TCP连接时,需要进行四次挥手。具体来说,TCP三次握手的过程如下: 客户端向服务端发送SYN报文,表示请求建立连接。服务端收到SYN报文后,向客户端发…

XXL-JOB源码梳理——一文理清XXL-JOB实现方案

分布式定时任务调度系统 流程分析 一个分布式定时任务&#xff0c;需要具备有以下几点功能&#xff1a; 核心功能&#xff1a;定时调度、任务管理、可观测日志高可用&#xff1a;集群、分片、失败处理高性能&#xff1a;分布式锁扩展功能&#xff1a;可视化运维、多语言、任…

部署并应用ByteTrack实现目标跟踪

尽管YOLOv8已经集成了ByteTrack算法&#xff0c;但在这里我还是想利用ByteTrack官网的代码&#xff0c;自己实现目标跟踪。 要想应用ByteTrack算法&#xff0c;首先就要从ByteTrack官网上下载并安装。虽然官网上介绍得很简单&#xff0c;只需要区区6行代码&#xff0c;但对于国…