sheng的学习笔记-【中英】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第四周测验

课程1_第4周_测验题

目录:目录

第一题

1.在我们的前向传播和后向传播实现中使用的 “缓存” 是什么?

A. 【  】它用于在训练期间缓存成本函数的中间值。

B. 【  】我们用它将在正向传播过程中计算的变量传递到相应的反向传播步骤。它包含了反向传播计算导数的有用值。

C. 【  】它用于跟踪我们正在搜索的超参数,以加快计算速度。

D. 【  】我们用它将反向传播过程中计算的变量传递到相应的正向传播步骤。它包含用于计算正向传播的激活的有用值。

答案:

B.【 √ 】我们用它传递前向传播中计算的变量到相应的反向传播步骤,它包含用于计算导数的反向传播的有用值。

note:“cache” 记录来自正向传播单元的值并将其发送到反向传播单元,因为需要链式计算导数。

第二题

2.以下哪些是“超参数”?(选出所有正确项)

A. 【  】隐藏层规模 n [ l ] n^{[l]} n[l]

B. 【  】神经网络的层数 L L L

C. 【  】激活向量 a [ l ] a^{[l]} a[l]

D. 【  】权重矩阵 W [ l ] W^{[l]} W[l]

E. 【  】学习率 α \alpha α

F. 【  】迭代次数

G. 【  】偏置向量 b [ l ] b^{[l]} b[l]

答案:

A.【 √ 】隐藏层规模 n [ l ] n^{[l]} n[l]

B.【 √ 】神经网络的层数 L L L

E.【 √ 】学习率 α \alpha α

F.【 √ 】迭代次数

第三题

3.下列哪个说法是正确的?

A. 【  】神经网络的更深层通常比前面的层计算更复杂的特征。

B. 【  】神经网络的前面的层通常比更深层计算更复杂的特性。

答案:

A.【 √ 】神经网络的更深层通常比前面的层计算更复杂的输入特征。

第四题

4.向量化允许您在L层神经网络中计算前向传播时,不需要在层l = 1, 2, …, L间显式的使用for循环(或任何其他显式迭代循环),正确吗?

A. 【  】正确

B. 【  】错误

答案:

B.【 √ 】错误

note:在层间计算中,我们不能避免for循环迭代。

第五题

5.假设我们将 n [ l ] n ^ {[l]} n[l]的值存储在名为layers的数组中,如下所示:layer_dims = [n_x, 4, 3, 2, 1]。 因此,第1层有4个隐藏单元,第2层有3个隐藏单元,依此类推。 您可以使用哪个for循环初始化模型参数?

for(i in range(1, len(layer_dims/2))):parameter[‘W’ + str(i)] = np.random.randn(layers[i], layers[i-1]) * 0.01  parameter[‘b’ + str(i)] = np.random.randn(layers[i], 1) * 0.01
for(i in range(1, len(layer_dims/2))):  parameter[‘W’ + str(i)] = np.random.randn(layers[i], layers[i-1]) * 0.01  parameter[‘b’ + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
for(i in range(1, len(layer_dims))):  parameter[‘W’ + str(i)] = np.random.randn(layers[i-1], layers[i]) * 0.01  parameter[‘b’ + str(i)] = np.random.randn(layers[i], 1) * 0.01
for(i in range(1, len(layer_dims))):  parameter[‘W’ + str(i)] = np.random.randn(layers[i], layers[i-1]) * 0.01  parameter[‘b’ + str(i)] = np.random.randn(layers[i], 1) * 0.01

答案:

D.【 √ 】

for(i in range(1, len(layer_dims))):  parameter[‘W’ + str(i)] = np.random.randn(layers[i], layers[i-1]) * 0.01  parameter[‘b’ + str(i)] = np.random.randn(layers[i], 1) * 0.01

Note:矩阵运算,W矩阵与X特征向量相乘,W矩阵的列数与X特征向量的个数相等。

第六题

6.考虑以下神经网络,该神经网络有几层?
在这里插入图片描述

A. 【  】L层数是4,隐藏层数是3

B. 【  】L层数是3,隐藏层数是3

C. 【  】L层数是4,隐藏层数是4

D. 【  】L层数是5,隐藏层数是4

答案:

A.【 √ 】层数L为4,隐藏层数为3。

note:正如图中所看到的那样,层数被计为隐藏层数+1。输入层和输出层不计为隐藏层。

第七题

7.在前向传播期间,在层 l l l的前向传播函数中,您需要知道层 l l l中的激活函数(Sigmoid,tanh,ReLU等)是什么。在反向传播期间,相应的反向传播函数也需要知道第 l l l层的激活函数是什么,因为梯度是根据它来计算的。

A. 【  】对

B. 【  】不对

答案:

A.【 √ 】对

note:在反向传播期间,您需要知道正向传播中使用哪种激活函数才能计算正确的导数。

第八题

8.有一些函数具有以下特性:

(i) 当使用浅网络计算时,需要一个大网络(我们通过网络中的逻辑门数量来度量大小)。

(ii) 但是当使用深网络来计算时,我们只需要一个指数级小的网络。

A. 【  】对
B. 【  】不对

答案:

A.【 √ 】对

第九题

9.在以下2层隐藏层的神经网络中,以下哪句话是正确的?
在这里插入图片描述

A. 【  】 W [ 1 ] W^{[1]} W[1]的形状是 (4, 4)

B. 【  】 b [ 1 ] b^{[1]} b[1]的形状是 (4, 1)

C. 【  】 W [ 2 ] W^{[2]} W[2]的形状是 (3, 4)

D. 【  】 b [ 2 ] b^{[2]} b[2]的形状是 (3, 1)

E. 【  】 b [ 3 ] b^{[3]} b[3]的形状是 (1, 1)

F. 【  】 W [ 3 ] W^{[3]} W[3]的形状是 (1, 3)

答案:

A.【 √ 】 W [ 1 ] W^{[1]} W[1]的形状是 (4, 4)

B.【 √ 】 b [ 1 ] b^{[1]} b[1]的形状是 (4, 1)

C.【 √ 】 W [ 2 ] W^{[2]} W[2]的形状是 (3, 4)

D.【 √ 】 b [ 2 ] b^{[2]} b[2]的形状是 (3, 1)

E.【 √ 】 b [ 3 ] b^{[3]} b[3]的形状是 (1, 1)

F.【 √ 】 W [ 3 ] W^{[3]} W[3]的形状是 (1, 3)

第十题

10.前面的问题使用了一个特定的网络,一般情况下,层 l l l的权重矩阵 W [ l ] W^{[l]} W[l]的维数是多少?

A. 【  】 W [ l ] W^{[l]} W[l]的形状是 ( n [ l ] , n [ l − 1 ] ) (n^{[l]},n^{[l-1]}) (n[l],n[l1])

B. 【  】 W [ l ] W^{[l]} W[l]的形状是 ( n [ l − 1 ] , n [ l ] ) (n^{[l-1]},n^{[l]}) (n[l1],n[l])

C. 【  】 W [ l ] W^{[l]} W[l]的形状是 ( n [ l + 1 ] , n [ l ] ) (n^{[l+1]},n^{[l]}) (n[l+1],n[l])

D. 【  】 W [ l ] W^{[l]} W[l]的形状是 ( n [ l ] , n [ l + 1 ] ) (n^{[l]},n^{[l+1]}) (n[l],n[l+1])

答案:

A.【 √ 】 W [ l ] W^{[l]} W[l]的形状是 ( n [ l ] , n [ l − 1 ] ) (n^{[l]},n^{[l-1]}) (n[l],n[l1])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/94716.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

html 边缘融合加载

html 代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>边缘融合加载</title><style>* {margin: 0;padding: 0;box-sizing: border-box;}body {height: 100vh;padding-bottom: 80px;b…

DP读书:《openEuler操作系统》(四)鲲鹏处理器

鲲鹏处理器 一、处理器概述1.Soc2.Chip3.DIE4.Cluster5.Core 二、体系架构1.计算子系统2.存储子系统3.其他子系统 三、CPU编程模型1.中断与异常2.异常级别a.基本概念b.异常级别切换 下面为整理的内容&#xff1a;鲲鹏处理器 架构与编程&#xff08;一&#xff09;处理器与服务器…

uboot启动流程-uboot内存分配工作总结

一. uboot 启动流程 _main 函数中会调用 board_init_f 函数&#xff0c;本文继续简单分析一下 board_init_f 函数。 本文继续具体分析 board_init_f 函数。 本文继上一篇文章的学习&#xff0c;地址如下&#xff1a; uboot启动流程-uboot内存分配_凌肖战的博客-CSDN博客 二…

Flutter笔记:关于应用程序中提交图片作为头像

Flutter笔记 关于应用程序中提交图片作为头像 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/133418554…

【Vue组件化编程】

Vue组件化编程 1 对组件的理解2 非单文件组件2.1 基本使用2.2 几个注意点2.3 组件的嵌套2.4 VueComponent构造函数2.5 一个重要的内置关系 3 单文件组件 1 对组件的理解 组件&#xff1a;实现应用中局部功能代码和资源的集合。优点&#xff1a;文件好维护&#xff1b;依赖关系不…

SDL2绘制ffmpeg解析的mp4文件

文章目录 1.FFMPEG利用命令行将mp4转yuv4202.ffmpeg将mp4解析为yuv数据2.1 核心api: 3.SDL2进行yuv绘制到屏幕3.1 核心api 4.完整代码5.效果展示 本项目采用生产者消费者模型&#xff0c;生产者线程&#xff1a;使用ffmpeg将mp4格式数据解析为yuv的帧&#xff0c;消费者线程&am…

力扣 -- 96. 不同的二叉搜索树

解题步骤&#xff1a; 参考代码&#xff1a; class Solution { public:int numTrees(int n) {vector<int> dp(n1);//初始化dp[0]1;//填表for(int i1;i<n;i){for(int j1;j<i;j){//状态转移方程dp[i](dp[j-1]*dp[i-j]);}}//返回值return dp[n];} }; 你学会了吗&…

nodejs+vue养老人员活体鉴权服务系统elementui

系统 统计数据&#xff1a;统计报表、人员台账、机构数据、上报数据、核验报表等&#xff0c;养老人员活体鉴权服务是目前国家养老人员管理的重要环节&#xff0c;主要为以养老机构中养老人员信息为基础&#xff0c;每月进行活体鉴权识别并统计数据为养老补助等管理。前端功能&…

基于安卓android微信小程序的校园维修平台

项目介绍 随着社会的发展&#xff0c;社会的方方面面都在利用信息化时代的优势。互联网的优势和普及使得各种系统的开发成为必需。 本文以实际运用为开发背景&#xff0c;运用软件工程原理和开发方法&#xff0c;它主要是采用java语言技术和mysql数据库来完成对系统的设计。整…

Monkey基本使用及介绍

1 简介.. 1 1.1 Monkey是干什么的.. 1 1.2 我们为什么要用monkey. 1 1.3 试行monkey的计划.. 2 2 monkey使用.. 4 2.1 基本常识.. 4 2.2 基本使用.. 6 2.2.1 通过adb 来启动monkey. 6 2.2.2 一些命令选项.. 7 2.2.3 一些测试例子.. 7 2.2.4 执行注意事项.. 9 2.2.5侦…

Centos7 安装mysql 8.0.34并设置不区分大小写

索引 Centos7 安装mysql 8.0.34准备工作安装教程安装并配置配置MySQL配置远程访问重新启动MySQL服务 为已安装的MySQL8设置不区分大小写背景操作步骤 Centos7 安装mysql 8.0.34 准备工作 centos7 服务器 xshell 安装教程 安装并配置 在安装MySQL之前&#xff0c;我们应该…

c++ 基础知识(一)

文章目录 1. C关键字 2. 命名空间 3. C输入&输出 4. 缺省参数 文章内容 1. C关键字(C98) C总计63个关键字&#xff0c;C语言32个关键字 ps&#xff1a;下面我们只是看一下C有多少关键字&#xff0c;不对关键字进行具体的讲解。后面我学了以后再细讲。 2. 命名空间 …

Kaggle - LLM Science Exam上:赛事概述、数据收集、BERT Baseline

文章目录 一、赛事概述1.1 OpenBookQA Dataset1.2 比赛背景1.3 评估方法和代码要求1.4 比赛数据集1.5 优秀notebook 二、BERT Baseline2.1 数据预处理2.2 定义data_collator2.3 加载模型&#xff0c;配置trainer并训练2.4 预测结果并提交2.5 deberta-v3-large 1k Wiki&#xff…

【Docker】Docker的应用包含Sandbox、PaaS、Open Solution以及IT运维概念的详细讲解

前言 Docker 是一个开源的应用容器引擎&#xff0c;让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux或Windows操作系统的机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。 &#x1f4d5;作者简介&#xff1a;热…

​苹果应用高版本出现:“无法安装此app,因为无法验证其完整性”是怎么回事?竟然是错误的?

最近经常有同学私聊我问苹果应用签名后用落地页下载出现高版本是什么意思&#xff1f;我一脸懵&#xff01;还有这个操作&#xff1f;高版本是个啥玩意&#xff01;所以我就上了一下科技去搜索引擎搜索了下&#xff0c;哈哈哈&#xff0c;然后了解下来发现是这样的首先我们确定…

Doris数据库BE——冷热数据方案

新的冷热数据方案是在整合了存算分离模型的基础上建立的&#xff0c;其核心思路是&#xff1a;DORIS本地存储作为热数据的载体&#xff0c;而外部集群&#xff08;HDFS、S3等&#xff09;作为冷数据的载体。数据在导入的过程中&#xff0c;先作为热数据存在&#xff0c;存储于B…

十天学完基础数据结构-第五天(栈(Stack)和队列(Queue))

栈的定义和特点 栈是一种线性数据结构&#xff0c;它遵循后进先出&#xff08;LIFO&#xff09;原则。栈具有以下基本概念和特点&#xff1a; 栈顶&#xff1a;栈的顶部元素&#xff0c;是唯一可访问的元素。 入栈&#xff1a;将元素添加到栈顶。 出栈&#xff1a;从栈顶移除…

《计算机视觉中的多视图几何》笔记(12)

12 Structure Computation 本章讲述如何在已知基本矩阵 F F F和两幅图像中若干对对应点 x ↔ x ′ x \leftrightarrow x x↔x′的情况下计算三维空间点 X X X的位置。 文章目录 12 Structure Computation12.1 Problem statement12.2 Linear triangulation methods12.3 Geomet…

Boost程序库完全开发指南:1.2-C++基础知识点梳理

主要整理了N多年前&#xff08;2010年&#xff09;学习C的时候开始总结的知识点&#xff0c;好长时间不写C代码了&#xff0c;现在LLM量化和推理需要重新学习C编程&#xff0c;看来出来混迟早要还的。 1.const_cast <new_type> (expression)[1] 解析&#xff1a;const_c…

2023年哪款PDF虚拟打印机好用?

PDF文档想必大家都不陌生&#xff0c;在工作中经常会用到该格式的文档&#xff0c;那么有哪些方法能制作PDF文档呢&#xff1f;一般都是借助PDF虚拟打印机的&#xff0c;那么有哪些好用的软件呢&#xff1f; pdfFactory不仅为用户提供了丰富的PDF文档生成、打印功能&#xff0…