《计算机视觉中的多视图几何》笔记(12)

12 Structure Computation

本章讲述如何在已知基本矩阵 F F F和两幅图像中若干对对应点 x ↔ x ′ x \leftrightarrow x' xx的情况下计算三维空间点 X X X的位置。

文章目录

  • 12 Structure Computation
    • 12.1 Problem statement
    • 12.2 Linear triangulation methods
    • 12.3 Geometric error cost function
    • 12.4 Sampson approximation (first-order geometric correction)
    • 12.5 An optimal solution
      • 12.5.1 Reformulation of the minimization problem
      • 12.5.2 Details of the minimization
      • 12.5.3 Local minima
      • 12.5.4 Evaluation on real images
    • 12.6 Probability distribution of the estimated 3D point
    • 12.7 Line Reconstruction

12.1 Problem statement

我们假设已知摄像机矩阵 P P P P ′ P' P,基本矩阵 F F F,还有两幅图像中若干对对应点 x ↔ x ′ x \leftrightarrow x' xx。因为有噪声的存在,图像中的点反投影回去的两条射线不一定相交, x F x ′ xFx' xFx也不一定等于0,所以简单三角化不一定可行。

我们先回忆一下第10章三维重建的知识。我们介绍了好几种不同种类的三维重建,这取决于我们对摄像机矩阵的知晓程度。那么结合本章的三角化,我们希望三角化在不同种类的重建之间能给出同样的结果。我们首先用 τ \tau τ来代表三角化的过程,如果 τ \tau τ能满足下式,那么我们就说三角化在变换 H H H下是不变的:
τ ( x , x ′ , P , P ′ ) = H − 1 τ ( x , x ′ , P H − 1 , P ′ H − 1 ) \tau(x,x',P,P') = H^{-1}\tau(x,x',PH^{-1},P'H^{-1}) τ(x,x,P,P)=H1τ(x,x,PH1,PH1)

为什么需要讨论这个?这是因为我们首先需要确定三维重建的种类,才能决定优化目标的形式。如果我们只知道摄像机矩阵是一个projective matrix,那么我们就不能在三维空间最优化目标函数。因为这样的优化函数在投影变换中不能给出唯一的结果,因为距离和垂直度等概念在projective geometry的背景下无效。所以,本章给出的三角化方法优化的是二维图像上的距离,所以本章的方法在投影变换(projective transformation)中是不变的。
在这里插入图片描述

12.2 Linear triangulation methods

对于两幅图像,我们分别有 x = P X , x ′ = P X ′ x=PX,x'=PX' x=PX,x=PX,我们可以将第一个方程改成 x × P X = 0 x \times PX=0 x×PX=0,第二幅图也一样。我们继续改写就可以有 A X = 0 AX=0 AX=0

Homogeneous method 找出 A A A最小特征值对应的特征向量

Inhomogeneous method 参见4.1.2节,原书P90

讨论
Inhomogeneous method假设点不在无穷远处,不适合projective reconstruction。其实这两个方法都不适合。

Inhomogeneous method适合affine reconstruction。

Homogeneous method不适合affine reconstruction。

12.3 Geometric error cost function

在这里插入图片描述
由于图像中有噪声的存在, x ↔ x ′ x \leftrightarrow x' xx其实不能满足极线的约束,我们用 x ˉ , x ′ ˉ \bar{x},\bar{x'} xˉ,xˉ表示没有噪声的点。那么我们可以构建以下优化函数:

C ( x , x ′ ) = d ( x , x ^ ) 2 + d ( x ′ , x ^ ′ ) 2 s u b j e c t t o x ′ ^ T F x ^ = 0 C(x,x') = d(x,\hat{x})^2 + d(x',\hat{x}')^2 \\ subject \ to \ \hat{x'}^{T}F\hat{x} = 0 C(x,x)=d(x,x^)2+d(x,x^)2subject to x^TFx^=0

其中 d d d表示两点之间的欧氏距离。这相当于最小化点 X X X的重投影误差,该点 X X X通过与 F F F一致的投影矩阵映射到两个点,如图12.2。

12.4 Sampson approximation (first-order geometric correction)

在这里插入图片描述
我们定义 X X X X ^ \hat{X} X^之间的差为 δ X \delta_X δX
δ X = − J T ( J J T ) − 1 ϵ \delta_X = -J^T(JJ^T)^{-1} \epsilon δX=JT(JJT)1ϵ

其中
ϵ = x ′ T F x J = ∂ ϵ / ∂ x = [ ( F T x ′ ) 1 , ( F T x ′ ) 2 , ( F X ) 1 , ( F X ) 2 ] \epsilon = x'^{T}Fx \\ J = \partial \epsilon/ \partial x=[(F^{T}x')_{1}, (F^{T}x')_{2},(FX)_{1},(FX)_{2}] ϵ=xTFxJ=ϵ/x=[(FTx)1,(FTx)2,(FX)1,(FX)2]

其中 ( F T x ′ ) 1 = f 11 x ′ + f 21 y ′ + f 31 (F^{T}x')_{1}=f_{11}x'+f_{21}y'+f_{31} (FTx)1=f11x+f21y+f31,以此类推。
所以我们可以看出该差值其实是基本矩阵方程关于 x x x的导数
那么 X X X X ^ \hat{X} X^之间的关系可以写成:
X ^ = X + δ X \hat{X} = X + \delta_X X^=X+δX

我们只需要把 δ X \delta_X δX算出来,然后对计算出的理论点 X X X按照上式进行一个纠正就可以了。
在这里插入图片描述

12.5 An optimal solution

本节介绍一种可以找到全局最优解的优化函数,并且是非迭代的,我们同时假设噪声服从高斯分布。

12.5.1 Reformulation of the minimization problem

先对问题进行一个梳理。

我们知道第一幅图的极点一定在极线上,第二幅图的极点也满足这个性质。反过来,在极线上的点也满足基本矩阵的约束。那么就能让观测到的点尽可能靠近极线,也就是找观测点到极线的距离,并使其最小。

所以我们就可以构建出以下损失函数
d ( x , l ) 2 + d ( x ′ + l ′ ) 2 d(x,l)^2 + d(x'+l')^2 d(x,l)2+d(x+l)2

我们的策略如下:

  1. 将极线方程参数化,所以第一幅图像中的极线方程就可以写为 l ( t ) l(t) l(t)
  2. 利用基本矩阵 F F F,和 l ( t ) l(t) l(t)来计算第二幅图像中的极线l ′ ( t ) '(t) (t)
  3. 将损失函数写成 d ( x , l ( t ) ) 2 + d ( x ′ + l ′ ( t ) ) 2 d(x,l(t))^2 + d(x'+l'(t))^2 d(x,l(t))2+d(x+l(t))2
  4. 求解最优的 t t t

12.5.2 Details of the minimization

接下来我们讲一下需要注意的一些细节。

首先,两幅图中对应点都不能与极点重合。

并且,我们可以对两幅图都做一个刚体变换,那么 x , x ′ x,x' x,x就可以被放置在原点 ( 0 , 0 , 1 ) (0,0,1) (0,0,1),那么两幅图的极点分别是 ( 1 , 0 , f ) , ( 1 , 0 , f ′ ) (1,0,f),(1,0,f') (1,0,f),(1,0,f)。我们知道极点也是要满足 F F F的,所以我们有 F ( 1 , 0 , f ) T = ( 1 , 0 , f ′ ) F = 0 F(1,0,f)^T = (1,0,f')F = 0 F(1,0,f)T=(1,0,f)F=0,如此以来我们就可以把基本矩阵表示为一种特殊形式:
F = [ f f ′ d − f ′ c − f ′ d − f b a b − f d c d ] F = \left[ \begin{matrix} ff'd & -f'c & -f'd \\ -fb & a & b\\ -fd & c & d \\ \end{matrix} \right] F= ffdfbfdfcacfdbd

同时我们也知道极线会通过极点 ( 1 , 0 , f ) (1,0,f) (1,0,f),我们再找一个特殊点,那就是极线与 y y y轴的交点 ( 0 , t , 1 ) (0,t,1) (0,t,1),所以极线就可以写成 ( 1 , 0 , f ) × ( 0 , t , 1 ) = ( t f , 1 , − t ) (1,0,f) \times (0,t,1) = (tf,1,-t) (1,0,f)×(0,t,1)=(tf,1,t),那么该直线到原点的距离就是:
d ( x , l ( t ) ) 2 = t 2 1 + ( t f ) 2 d(x,l(t))^2 = \frac{t^2}{1+(tf)^2} d(x,l(t))2=1+(tf)2t2

紧接着我们找下一个极线:
l ′ ( t ) = F ( 0 , t , 1 ) T = ( − f ′ ( c t + d ) , a t + b , c t + d ) T l'(t) = F(0,t,1)T=(-f'(ct+d),at+b,ct+d)^T l(t)=F(0,t,1)T=(f(ct+d),at+b,ct+d)T

该极线到原点的距离:
d ( x ′ , l ′ ( t ) ) 2 = ( c t + d ) 2 ( a t + v ) 2 + f ′ 2 ( c t + d ) 2 d(x',l'(t))^2 = \frac{(ct+d)^2}{(at+v)^2 +f'^2(ct+d)^2} d(x,l(t))2=(at+v)2+f′2(ct+d)2(ct+d)2

于是我们把 d ( x ′ , l ′ ( t ) ) 2 , d ( x , l ( t ) ) 2 d(x',l'(t))^2, d(x,l(t))^2 d(x,l(t))2,d(x,l(t))2 加在一起,记为 s ( t ) s(t) s(t)求导数,令导数等于0,就可以了。

一些讨论 s ( t ) s(t) s(t)是6次多项式,那么它就有6个实根,对应于3个最小值和3个最大值。顺便别忘了检查 x → ∞ x \rightarrow \infty x的情况。

下面我们把整个算法流程重复一遍,对应于P318算法12.1。

算法输入:观测到的对应点 x ↔ x ′ x \leftrightarrow x' xx,基本矩阵 F F F

算法输出:寻找一对 x ^ ↔ x ^ ′ \hat{x} \leftrightarrow \hat{x}' x^x^可以使几何损失函数最小,同时这一对点满足 x ^ ′ T F x ^ = 0 \hat{x}'^{T}F\hat{x} = 0 x^TFx^=0

算法步骤:

  1. 定义一对转换矩阵,可以把 x = ( x , y , 1 ) T , x ′ = ( x ′ , y ′ , t ) T x=(x,y,1)^{T},x'=(x',y',t)^{T} x=(x,y,1)T,x=(x,y,t)T转换到原点
    T = [ 1 − x 1 − y 1 ] T=\left[ \begin{matrix} 1 & & -x \\ &1 & -y \\ & & 1\\ \end{matrix} \right] T= 11xy1

    T ′ T' T的形式与 T T T是类似的

  2. 将基本矩阵 F F F变成 T ′ − T F T − 1 T'^{-T}FT^{-1} TTFT1

  3. 计算左极点 e = ( e 1 , e 2 , e 3 ) e=(e_1,e_2,e_3) e=(e1,e2,e3)和右极点 e ′ = ( e 1 ′ , e 2 ′ , e 3 ′ ) e'=(e'_1,e'_2,e'_3) e=(e1,e2,e3),并且归一化,使得 e 1 + e 2 = 1 e_1+e_2=1 e1+e2=1

  4. 构造两个旋转矩阵,这两个矩阵可以把 e e e旋转到 ( 1 , 0 , e 3 ) (1,0,e_3) (1,0,e3) ( 1 , 0 , e 3 ′ ) (1,0,e'_3) (1,0,e3).
    R = [ e 1 e 2 − e 2 e 1 1 ] R=\left[ \begin{matrix} e_1 &e_2 & \\ -e_2 &e_1 & \\ & & 1\\ \end{matrix} \right] R= e1e2e2e11
    R ′ R' R R R R类似

  5. F F F改成 R ′ F R T R'FR^{T} RFRT

  6. 设置以下等式 f = e 3 , f ′ = e 3 , a = F 22 , b = F 23 , c = F 32 , d = F 33 f=e_3,f'=e_3,a=F_{22},b=F_{23},c=F_{32},d=F_{33} f=e3,f=e3,a=F22,b=F23,c=F32,d=F33

  7. 将第6步中的等式带入 s ( t ) s(t) s(t)中,求解t

  8. 对求得的解进行验证,同时检查 t → ∞ t \rightarrow \infty t 的情况

  9. t t t带入极线方程,找到 x ^ , x ^ ′ \hat{x},\hat{x}' x^x^,极线知道了,观测点 x , x ′ x,x' x,x也知道,求直线上某个点,它要满足到已知点距离最近,由于我们把 x , x ′ x,x' x,x转到了原点,那么问题就转变成了直线上求某一点,它到原点距离最近。书中给出了一个公式,对于一个一般的直线 ( λ , μ , ν ) (\lambda, \mu, \nu) (λ,μ,ν),直线上到原点最近的点是 ( − λ ν , − μ ν , λ 2 + μ 2 ) (-\lambda \nu, -\mu \nu, \lambda^2+\mu^2) (λν,μν,λ2+μ2)

  10. 知道 x ^ , x ^ ′ \hat{x},\hat{x}' x^,x^后,再把他们旋转到原坐标, x ^ = T − 1 R T x ^ \hat{x} = T^{-1} R^{T} \hat{x} x^=T1RTx^ x ^ ′ = T − 1 R T x ^ ′ \hat{x}' = T^{-1} R^{T} \hat{x}' x^=T1RTx^

  11. 可以顺便利用 x ^ , x ^ ′ \hat{x},\hat{x}' x^,x^计算出三维空间点 X ^ \hat{X} X^(三角化,12.2)

12.5.3 Local minima

g ( t ) g(t) g(t)有6个自由度,所以它最多有三个最小值。那么如果用迭代的方法去寻找最小值,可能陷在局部最小值里出不来。

12.5.4 Evaluation on real images

本节大概展示了一些实验结果,在P320

12.6 Probability distribution of the estimated 3D point

估计三维点的概率分布。

通过两幅图像估计出来的三维空间点应该是满足一定概率分布的。其准确与否主要取决于从摄像机出发的,两条射线之间的角度。本节就对这个问题进行建模。书中为了简化这个问题,只考虑空间某平面上的点 X = ( x , y ) T X=(x,y)^T X=(x,y)T,其图像上的点分别表示为 x = f ( X ) , x ′ = f ′ ( X ) x=f(X), x'=f'(X) x=f(X),x=f(X), f , f ′ f,f' f,f 2 × 3 2 \times 3 2×3的矩阵,而不是 3 × 4 3 \times 4 3×4 如果忘了可以复习一下p175 6.4.2节

我们线考虑第一幅图像上的点 x x x,并且我们假设噪声服从均值为0,方差为 σ 2 \sigma^2 σ2的高斯分布,那么在已知 X X X的条件下 x x x的概率分布可以表示为 p ( x ∣ X ) p(x|X) p(xX),对第二幅图上的点 x ′ x' x有相同的结论 p ( x ′ ∣ X ) p(x'|X) p(xX)。那么当 x , x ′ x,x' x,x已知的时候,我们可以用贝叶斯公式反推 X X X的概率分布

p ( X ∣ x , x ′ ) = p ( x , x ′ ∣ X ) p ( X ) / p ( x , x ′ ) p(X|x,x') = p(x,x'|X)p(X) / p(x,x') p(Xx,x)=p(x,xX)p(X)/p(x,x)

再加上 x , x ′ x,x' x,x独立的假设,上式就可以化成

p ( X ∣ x , x ′ ) ∼ p ( x ∣ X ) p ( x ′ ∣ X ) p(X|x,x') \sim p(x|X)p(x'|X) p(Xx,x)p(xX)p(xX)

12.7 Line Reconstruction

我们现在要重建空间中的一个线段。它在两幅图像上分别表示为 l , l ′ l, l' l,l。我们可以把 l , l ′ l,l' l,l反投影回去,那么他们在空间中就是两个平面 π , π ′ \pi, \pi' π,π, 这两个平面的交点就是所求直线。我们可以形式化的表示为 π = P T l , π ′ = P ′ T l ′ \pi = P^Tl, \pi' = P'^T l' π=PTl,π=PTl,那么三维空间中的线就可以用这两个平面来表示 ( L L L是一个 2 × 4 2 \times 4 2×4的矩阵)
L = [ l T P l ′ T P ′ ] L = \left[ \begin{matrix} l^T P \\ l'^T P' \end{matrix} \right] L=[lTPlTP]

空间中的点 X X X L L L上,所以 L X = 0 LX=0 LX=0

在这里插入图片描述
在这里插入图片描述

退化的情况

如果这个直线在极平面上,那么上一节的方法就失效了,而且这样直线会和基线相交。在实际情况下,几乎要和基线相交的线也不能用以上方法来重建.

多平面相交的重建

假设有 n n n个平面,那么我们就他们像前文 L L L一样放在一起,形成一个 n × 4 n \times 4 n×4的矩阵 A A A。对 A A A做SDV分解 A = U D V T A=UDV^T A=UDVT,从 D D D中找出两个最大的特征值对应的特征向量,用他们来表示平面,也可以假设空间中直线 L L L投影到各个平面,然后计算投影直线和观测直线之间的几何损失函数,用极大似然估计求解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/94688.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Boost程序库完全开发指南:1.2-C++基础知识点梳理

主要整理了N多年前&#xff08;2010年&#xff09;学习C的时候开始总结的知识点&#xff0c;好长时间不写C代码了&#xff0c;现在LLM量化和推理需要重新学习C编程&#xff0c;看来出来混迟早要还的。 1.const_cast <new_type> (expression)[1] 解析&#xff1a;const_c…

2023年哪款PDF虚拟打印机好用?

PDF文档想必大家都不陌生&#xff0c;在工作中经常会用到该格式的文档&#xff0c;那么有哪些方法能制作PDF文档呢&#xff1f;一般都是借助PDF虚拟打印机的&#xff0c;那么有哪些好用的软件呢&#xff1f; pdfFactory不仅为用户提供了丰富的PDF文档生成、打印功能&#xff0…

JAVA学习(4)-全网最详细~

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…

【k8s】集群搭建篇

文章目录 搭建kubernetes集群kubeadm初始化操作安装软件(master、所有node节点)Kubernetes Master初始化Kubernetes Node加入集群部署 CNI 网络插件测试 kubernetes 集群停止服务并删除原来的配置 二进制搭建(单master集群)初始化操作部署etcd集群安装Docker部署master节点解压…

在visual studio里配置Qt插件并运行Qt工程

Qt插件&#xff0c;也叫qt-vsaddin&#xff0c;它以*.vsix后缀名结尾。visual studio简称为VS&#xff0c;从visual studio 2010版本开始&#xff0c;VS支持Qt框架的开发&#xff0c;Qt以插件方式集成到VS里。这里简述在visual studio 2019里配置Qt 5.14.2插件&#xff0c;并配…

MyBatisCodeHelper Pro3.x新版本插件自由

1效果图 我的版本为3.2.2 2.资源链接 码云地址点这里 3.使用说明 将我修改好后的MyBatisCodeHelper-Pro-obfuss.jar替换MybatisCodeHelperNew-3.x.x.zip&#xff08;原版本插件&#xff09;\MyBatisCodeHelper-Pro\lib中的MyBatisCodeHelper-Pro-obfuss.jar 4.实现与感谢…

全志ARM926 Melis2.0系统的开发指引②

全志ARM926 Melis2.0系统的开发指引② 编写目的4. 编译工具链使用4.1.工具链通用配置4.2.模块的工具链配置4.3.简单的 makefile 5. 固件烧录工具的安装5.1.PhoenixSuit 的安装步骤5.2.检验 USB 驱动安装5.3.使用烧录软件 PhoenixSuit -全志相关工具和资源-.1 全志固件镜像修改工…

Foxit PDF

Foxit PDF 福昕PDF 软件&#xff0c;可以很好的编辑PDF文档。 调整&#xff30;&#xff24;&#xff26;页面大小 PDF文档中&#xff0c;一个页面大&#xff0c;一个页面小 面对这种情况,打开Foxit PDF 右键单击需要调整的页面,然后选择"调整页面大小". 可以选择…

Java8 Lambda.stream.sorted() 方法使用浅析分享

文章目录 Java8 Lambda.stream.sorted() 方法使用浅析分享sorted() 重载方法一升序降序 sorted() 重载方法二升序降序多字段排序 mock代码 Java8 Lambda.stream.sorted() 方法使用浅析分享 本文主要分享运用 Java8 中的 Lambda.stream.sorted方法排序的使用&#xff01; sorted…

Go语言面经进阶10问

1.Golang可变参数 函数方法的参数&#xff0c;可以是任意多个&#xff0c;这种我们称之为可以变参数&#xff0c;比如我们常用的fmt.Println()这类函数&#xff0c;可以接收一个可变的参数。可以变参数&#xff0c;可以是任意多个。我们自己也可以定义可以变参数&#xff0c;可…

Day-06 基于 Docker安装 Nginx 镜像

1.去官方公有仓库查询nginx镜像 docker search nginx 2.拉取该镜像 docker pull nginx 3. 启动镜像&#xff0c;使用nginx服务&#xff0c;代理本机8080端口(测试是不是好使) docker run -d -p 8080:80 --name nginx-8080 nginx docker ps curl 127.0.0.1:8080

[CSCCTF 2019 Qual]FlaskLight 过滤 url_for globals 绕过globals过滤

目录 subprocess.Popen FILE warnings.catch_warnings site._Printer 这题很明显就是 SSTI了 源代码 我们试试看 {{7*7}} 然后我们就开始吧 原本我的想法是直接{{url_for.__globals__}} 但是回显是直接500 猜测过滤 我们正常来吧 {{"".__class__}} 查看当前…

CSS3与HTML5

box-sizing content-box&#xff1a;默认&#xff0c;宽高包不含边框和内边距 border-box&#xff1a;也叫怪异盒子&#xff0c;宽高包含边框和内边距 动画&#xff1a;移动translate&#xff0c;旋转、transform等等 走马灯&#xff1a;利用动画实现animation&#xff1a;from…

雷达编程实战之提高探测速度

有效帧频率作为雷达一个非常核心的指标&#xff0c;它代表了雷达探测识别的速度&#xff0c;速度越快&#xff0c;后级各项智能驾驶功能就能得到更快、更有效的判断。本篇文章首先从硬件的角度&#xff0c;提供了一种合理利用片上资源提高探测识别速度的常用方法&#xff0c;然…

SSL/TLS介绍以及wireshark抓包TLS Handshake报文

文章目录 1.概念1.1 SSL/TLS发展历史1.2 TLS两个阶段1.3 TLS报文头 2.TLS Handshake2.1 Handshake具体过程2.1.1 单向认证和双向认证2.1.2 复用TLS协商结果Session Identifier&#xff08;会话标识符&#xff09;Session Ticket&#xff08;会话票据&#xff09; 2.2 Handshake…

基于j2ee的交通管理信息系统/交通管理系统

摘 要 随着当今社会的发展&#xff0c;时代的进步&#xff0c;各行各业也在发生着变化&#xff0c;比如交通管理这一方面&#xff0c;利用网络已经逐步进入人们的生活。传统的交通管理&#xff0c;都是工作人员线下手工统计&#xff0c;这种传统方式局限性比较大且花费较多。计…

全志ARM926 Melis2.0系统的开发指引①

全志ARM926 Melis2.0系统的开发指引① 1. 编写目的2. Melis2.0 系统概述3. Melis2.0 快速开发3.1. Melis2.0 SDK 目录结构3.2. Melis2.0 编译环境3.3. Melis2.0 固件打包3.4. Melis2.0 固件烧录3.5.串口打印信息3.6. Melis2.0 添加和调用一个模块3.6.1. 为什么划分模块&#xf…

软件或游戏提示msvcp120.dll丢失的5种常用解决方法,msvcp120.dll文件全面解析

在当今数字化的时代&#xff0c;我们的生活已经离不开各种软件和游戏。然而&#xff0c;有时候我们可能会遇到一些技术问题&#xff0c;比如“软件或游戏提示msvcp120.dll丢失”。这个问题对于许多人来说可能很棘手&#xff0c;但是只要掌握了正确的解决方法&#xff0c;就能轻…

【现代机器人学】学习笔记十四:中文版印刷/翻译勘误

首先声明&#xff0c;这个印刷/勘误并非经过官方的认可&#xff0c;只是我个人的粗浅的理解。如果内容有误&#xff0c;恳请大家谅解指正。 其实有的并不算错&#xff0c;只是我个人认为不太准确&#xff0c;在我学习过程中产生了一些小疑惑和误解。 都是一些小毛病&#xff…

OpenCV 14(角点特征Harris和Shi-Tomasi)

一、角点 角点是图像很重要的特征,对图像图形的理解和分析有很重要的作用。角点在三维场景重建运动估计&#xff0c;目标跟踪、目标识别、图像配准与匹配等计算机视觉领域起着非常重要的作用。在现实世界中&#xff0c;角点对应于物体的拐角&#xff0c;道路的十字路口、丁字路…