分类预测 | MATLAB实现PSO-CNN粒子群算法优化卷积神经网络数据分类预测

分类预测 | MATLAB实现PSO-CNN粒子群算法优化卷积神经网络数据分类预测

目录

    • 分类预测 | MATLAB实现PSO-CNN粒子群算法优化卷积神经网络数据分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现PSO-CNN多特征分类预测,多特征输入模型,运行环境Matlab2018b及以上;
2.基于粒子群算法(PSO)优化卷积神经网络(CNN)分类预测,优化参数为,学习率,批处理,正则化参数;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。

程序设计

  • 完整程序和数据获取方式1:私信博主,同等价值程序兑换;
  • 完整程序和数据下载方式2(资源处直接下载):MATLAB实现PSO-CNN粒子群算法优化卷积神经网络数据分类预测
%%  优化算法参数设置
SearchAgents_no = 3;                  % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                              % 优化参数个数%% 建立模型
lgraph = [convolution2dLayer([1, 1], 32)  % 卷积核大小 3*1 生成32张特征图batchNormalizationLayer         % 批归一化层reluLayer                       % Relu激活层dropoutLayer(0.2)               % Dropout层fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层softmaxLayer("Name", "softmax")                                  % softmax激活层classificationLayer("Name", "classification")];                  % 分类层%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 10,...                 % 最大训练次数 'MiniBatchSize',best_hd, ...'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过800次训练后 学习率
%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/94559.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Webpack 基础入门以及接入 CSS、Typescript、Babel

一、什么是 Webpack Webpack 是一款 JS 模块化开发的技术框架,其运作原理是将多个 JS 文件关联起来构成可运行的应用程序。 Webpack 拥有丰富的 plugins / loaders 插件生态圈,可以让 js 识别不同的语言如 .css, .scss, .sass, .json, .xml, .ts, .vue…

Web版Photoshop来了,用到了哪些前端技术?

经过 Adobe 工程师多年来的努力,并与 Chrome 等浏览器供应商密切合作,通过 WebAssembly Emscripten、Web Components Lit、Service Workers Workbox 和新的 Web API 的支持,终于在近期推出了 Web 版 Photoshop(photoshop.adobe…

BL808学习日志-2-LVGL for M0 and D0

一、lvgl测试环境 对拿到的M1S_DOCK开发板进行开发板测试,博流的官方SDK是支持M0和D0两个内核都进行测试的;但是目前只实现了M0的LVGLBenchmark,测试D0内核中发现很多莫名其妙的问题。一会详细记录。 使用的是开发板自带的SPI显示屏&#xff…

wzsc_文件上传(条件竞争)

打开题目链接,很常见的文件上传框 经过尝试,发现上传东西后会调用upload.php,猜测文件被传到upload目录下 随便传了几个类型的文件,访问upload目录 发现.php文件以及.htaccess、.user.ini这种配置文件都没有传上去 但是通过抓包…

Redis相关概念

1. 什么是Redis?它主要用来什么的? Redis,英文全称是Remote Dictionary Server(远程字典服务),是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提…

深入探讨 Presto 中的缓存

【squids.cn】 全网zui低价RDS,免费的迁移工具DBMotion、数据库备份工具DBTwin、SQL开发工具等 Presto是一种流行的开源分布式SQL引擎,使组织能够在多个数据源上大规模运行交互式分析查询。缓存是一种典型的提高 Presto 查询性能的优化技术。它为 Prest…

阿里云新账户什么意思?老用户、产品首购详细说明

阿里云新账户、老账号、产品首购和同人账号什么意思?阿里云账号分为云新账户、老账户、产品首购、同人账号和同一用户,阿里云官方推出的活动很多是限制账号类型的,常见的如阿里云新用户,什么是阿里云新用户?是指从未在…

408计网应用层总结

网络应用模型 ■客户/服务器模型(C/S):客户是服务请求方,服务器是服务提供方 ■P2P模型:各主机都是客户,也都是服务器(任意一对计算机成称为对等方) 注: 1.客户…

Overloud TH-U Complete for Mac:演绎您的音乐世界

Overloud TH-U Complete for Mac是一款功能强大的吉他谱曲软件,可以让您在Mac电脑上轻松进行吉他模拟、录音和混音等操作,创作属于自己的音乐作品。 Overloud TH-U Complete for Mac提供了丰富的吉他模拟和音效库,涵盖了多种吉他放大器、箱体…

计算机考研 | 2016年 | 计算机组成原理真题

文章目录 【计算机组成原理2016年真题44题-9分】【第一步:信息提取】【第二步:具体解答】 【计算机组成原理2016年真题45题-14分】【第一步:信息提取】【第二步:具体解答】 【计算机组成原理2016年真题44题-9分】 假定CPU主频为5…

Docker项目部署

目录 一、前端项目部署 1、上传文件 2、开启容器 3、测试 二、后端项目部署 1、打包java项目 2、将jar包和Dockerfile文件长传到Linux系统 3、构建镜像 4、开启容器 5、测试 三、DockerCompose快速部署 基本语法 一、前端项目部署 1、上传文件 里面包括页面和配置文…

秋招校招,什么是群面?

时间已经来到十月份,我们也迎来了秋季招聘的高峰期。一般来说,企业为了提高面试的速度,一般都会让我们进行群面。可是,很多人不懂得“群面”的意思,由此导致自己在面试环节丢分。今天,就跟着小编一起来了解…

阿里云关系型数据库有哪些?RDS云数据库汇总

阿里云RDS关系型数据库大全,关系型数据库包括MySQL版、PolarDB、PostgreSQL、SQL Server和MariaDB等,NoSQL数据库如Redis、Tair、Lindorm和MongoDB,阿里云百科分享阿里云RDS关系型数据库大全: 目录 阿里云RDS关系型数据库大全 …

QT实现TCP服务器客户端的实现

ser: widget.cpp: #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);//实例化一个服务器server new QTcpServer(this);// 此时&#xf…

嵌入式软件架构中抽象层设计方法

大家好,今天分享一篇嵌入式软件架构设计相关的文章。 软件架构这东西,众说纷纭,各有观点。什么是软件架构,我们能在网上找到无数种定义。 比如,我们可以这样定义:软件架构是软件系统的基本结构&#xff0c…

g(x)=abx形式的函数最小二乘法计算方法

设函数,利用最小二乘法求解系数a和b: 设,,有 用最小二乘法求解和后,可得和: ,

【网络安全---ICMP报文分析】Wireshark教程----Wireshark 分析ICMP报文数据试验

一,试验环境搭建 1-1 试验环境示例图 1-2 环境准备 两台kali主机(虚拟机) kali2022 192.168.220.129/24 kali2022 192.168.220.3/27 1-2-1 网关配置: 编辑-------- 虚拟网路编辑器 更改设置进来以后 ,先选择N…

(Note)机器学习面试题

机器学习 1.两位同事从上海出发前往深圳出差,他们在不同时间出发,搭乘的交通工具也不同,能准确描述两者“上海到深圳”距离差别的是: A.欧式距离 B.余弦距离 C.曼哈顿距离 D.切比雪夫距离 S:D 1. 欧几里得距离 计算公式&#x…

【单片机】13-实时时钟DS1302

1.RTC的简介 1.什么是实时时钟(RTC) (rtc for real time clock) (1)时间点和时间段的概念区分 (2)单片机为什么需要时间点【一定的时间点干什么事情】 (3)RTC如何存在于…

国庆假期day5

作业:请写出七层模型及每一层的功能,请绘制三次握手四次挥手的流程图 1.OSI七层模型: 应用层--------提供函 表示层--------表密缩 会话层--------会话 传输层--------进程的接收和发送 网络层--------寻主机 数据链路层----相邻节点的可靠传…