yolov8 opencv模型部署(C++版)

yolov8 opencv模型部署(C++ 版)

使用opencv推理yolov8模型,仅依赖opencv,无需其他库,以yolov8s为例子,注意:

  • 使用opencv4.8.0 !
  • 使用opencv4.8.0 !
  • 使用opencv4.8.0 !
    如果你使用别的版本,例如opencv4.5,可能会出现以下错误。
    请添加图片描述

一、安装yolov8

conda create -n yolov8 python=3.9 -y
conda activate yolov8
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

二、导出onnx

导出onnx格式模型的时候,注意,如果你是自己训练的模型,只需要把以下代码中yolov8s.pt修改为自己的模型即可,如best.pt。如果是下面代码中默认的模型,并且你没有下载到本地,系统会自动下载,我这里在文章末尾提供了下载链接。

将以下代码创建、拷贝到yolov8根目录下。

具体代码my_export.py:

from ultralytics import YOLO
# Load a model
model = YOLO('yolov8s.pt')  # load an official model
# Export the model
model.export(format='onnx', imgsz=[480, 640], opset=12)

执行导出命令:

python my_export.py

输出如下图信息,表明onnx格式的模型被成功导出,保存在my_export.py同一级目录。
请添加图片描述

三、基于opencv CPP推理onnx

使用opencv4.8.0,linux和windows都可以,下面以windows为例子。

以下是主函数文件main.cpp:

#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>
#include "inference.h"
using namespace std;
using namespace cv;int main(int argc, char **argv)
{bool runOnGPU = false;// 1. 设置你的onnx模型// Note that in this example the classes are hard-coded and 'classes.txt' is a place holder.Inference inf("D:/CodePython/ultralytics/yolov8s.onnx", cv::Size(640, 480), "classes.txt", runOnGPU); // classes.txt 可以缺失// 2. 设置你的输入图片std::vector<std::string> imageNames;imageNames.push_back("bus.jpg");//imageNames.push_back("zidane.jpg");for (int i = 0; i < imageNames.size(); ++i){cv::Mat frame = cv::imread(imageNames[i]);// Inference starts here...std::vector<Detection> output = inf.runInference(frame);int detections = output.size();std::cout << "Number of detections:" << detections << std::endl;// feiyull// 这里需要resize下,否则结果不对cv::resize(frame, frame, cv::Size(480, 640));for (int i = 0; i < detections; ++i){Detection detection = output[i];cv::Rect box = detection.box;cv::Scalar color = detection.color;// Detection boxcv::rectangle(frame, box, color, 2);// Detection box textstd::string classString = detection.className + ' ' + std::to_string(detection.confidence).substr(0, 4);cv::Size textSize = cv::getTextSize(classString, cv::FONT_HERSHEY_DUPLEX, 1, 2, 0);cv::Rect textBox(box.x, box.y - 40, textSize.width + 10, textSize.height + 20);cv::rectangle(frame, textBox, color, cv::FILLED);cv::putText(frame, classString, cv::Point(box.x + 5, box.y - 10), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 0), 2, 0);}cv::imshow("Inference", frame);cv::waitKey(0);cv::destroyAllWindows();}
}

以下是运行效果图:
请添加图片描述
其他依赖文件:inference.h、inference.cpp
inference.h:

#ifndef INFERENCE_H
#define INFERENCE_H// Cpp native
#include <fstream>
#include <vector>
#include <string>
#include <random>// OpenCV / DNN / Inference
#include <opencv2/imgproc.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>struct Detection
{int class_id{0};std::string className{};float confidence{0.0};cv::Scalar color{};cv::Rect box{};
};class Inference
{
public:Inference(const std::string &onnxModelPath, const cv::Size &modelInputShape = {640, 640}, const std::string &classesTxtFile = "", const bool &runWithCuda = true);std::vector<Detection> runInference(const cv::Mat &input);private:void loadClassesFromFile();void loadOnnxNetwork();cv::Mat formatToSquare(const cv::Mat &source);std::string modelPath{};std::string classesPath{};bool cudaEnabled{};std::vector<std::string> classes{"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"};cv::Size2f modelShape{};float modelConfidenceThreshold {0.25};float modelScoreThreshold      {0.45};float modelNMSThreshold        {0.50};bool letterBoxForSquare = true;cv::dnn::Net net;
};#endif // INFERENCE_H

inference.cpp

#include "inference.h"Inference::Inference(const std::string &onnxModelPath, const cv::Size &modelInputShape, const std::string &classesTxtFile, const bool &runWithCuda)
{modelPath = onnxModelPath;modelShape = modelInputShape;classesPath = classesTxtFile;cudaEnabled = runWithCuda;loadOnnxNetwork();// loadClassesFromFile(); The classes are hard-coded for this example
}std::vector<Detection> Inference::runInference(const cv::Mat &input)
{cv::Mat modelInput = input;if (letterBoxForSquare && modelShape.width == modelShape.height)modelInput = formatToSquare(modelInput);cv::Mat blob;cv::dnn::blobFromImage(modelInput, blob, 1.0/255.0, modelShape, cv::Scalar(), true, false);net.setInput(blob);std::vector<cv::Mat> outputs;net.forward(outputs, net.getUnconnectedOutLayersNames());int rows = outputs[0].size[1];int dimensions = outputs[0].size[2];bool yolov8 = false;// yolov5 has an output of shape (batchSize, 25200, 85) (Num classes + box[x,y,w,h] + confidence[c])// yolov8 has an output of shape (batchSize, 84,  8400) (Num classes + box[x,y,w,h])if (dimensions > rows) // Check if the shape[2] is more than shape[1] (yolov8){yolov8 = true;rows = outputs[0].size[2];dimensions = outputs[0].size[1];outputs[0] = outputs[0].reshape(1, dimensions);cv::transpose(outputs[0], outputs[0]);}float *data = (float *)outputs[0].data;float x_factor = modelInput.cols / modelShape.width;float y_factor = modelInput.rows / modelShape.height;std::vector<int> class_ids;std::vector<float> confidences;std::vector<cv::Rect> boxes;for (int i = 0; i < rows; ++i){if (yolov8){float *classes_scores = data+4;cv::Mat scores(1, classes.size(), CV_32FC1, classes_scores);cv::Point class_id;double maxClassScore;minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);if (maxClassScore > modelScoreThreshold){confidences.push_back(maxClassScore);class_ids.push_back(class_id.x);float x = data[0];float y = data[1];float w = data[2];float h = data[3];int left = int((x - 0.5 * w) * x_factor);int top = int((y - 0.5 * h) * y_factor);int width = int(w * x_factor);int height = int(h * y_factor);boxes.push_back(cv::Rect(left, top, width, height));}}else // yolov5{float confidence = data[4];if (confidence >= modelConfidenceThreshold){float *classes_scores = data+5;cv::Mat scores(1, classes.size(), CV_32FC1, classes_scores);cv::Point class_id;double max_class_score;minMaxLoc(scores, 0, &max_class_score, 0, &class_id);if (max_class_score > modelScoreThreshold){confidences.push_back(confidence);class_ids.push_back(class_id.x);float x = data[0];float y = data[1];float w = data[2];float h = data[3];int left = int((x - 0.5 * w) * x_factor);int top = int((y - 0.5 * h) * y_factor);int width = int(w * x_factor);int height = int(h * y_factor);boxes.push_back(cv::Rect(left, top, width, height));}}}data += dimensions;}std::vector<int> nms_result;cv::dnn::NMSBoxes(boxes, confidences, modelScoreThreshold, modelNMSThreshold, nms_result);std::vector<Detection> detections{};for (unsigned long i = 0; i < nms_result.size(); ++i){int idx = nms_result[i];Detection result;result.class_id = class_ids[idx];result.confidence = confidences[idx];std::random_device rd;std::mt19937 gen(rd());std::uniform_int_distribution<int> dis(100, 255);result.color = cv::Scalar(dis(gen),dis(gen),dis(gen));result.className = classes[result.class_id];result.box = boxes[idx];detections.push_back(result);}return detections;
}void Inference::loadClassesFromFile()
{std::ifstream inputFile(classesPath);if (inputFile.is_open()){std::string classLine;while (std::getline(inputFile, classLine))classes.push_back(classLine);inputFile.close();}
}void Inference::loadOnnxNetwork()
{net = cv::dnn::readNetFromONNX(modelPath);if (cudaEnabled){std::cout << "\nRunning on CUDA" << std::endl;net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);}else{std::cout << "\nRunning on CPU" << std::endl;net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);}
}cv::Mat Inference::formatToSquare(const cv::Mat &source)
{int col = source.cols;int row = source.rows;int _max = MAX(col, row);cv::Mat result = cv::Mat::zeros(_max, _max, CV_8UC3);source.copyTo(result(cv::Rect(0, 0, col, row)));return result;
}

完整代码+数据下载:
链接:https://pan.baidu.com/s/1XcgPSzxFhgxYEONum3dJFA?pwd=xcof
提取码:xcof

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/92550.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第8章 Spring(二)

8.11 Spring 中哪些情况下,不能解决循环依赖问题 难度:★★ 重点:★★ 白话解析 有一下几种情况,循环依赖是不能解决的: 1、原型模式下的循环依赖没办法解决; 假设Girl中依赖了Boy,Boy中依赖了Girl;在实例化Girl的时候要注入Boy,此时没有Boy,因为是原型模式,每次都…

28270-2012 智能型阀门电动装置 学习笔记

声明 本文是学习GB-T 28270-2012 智能型阀门电动装置. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本标准规定了智能型阀门电动装置(以下简称智能电装)的术语、技术要求、试验方法、检验规则、标 志、包装、运输和贮存条件等。 本标准适…

destoon根据查询标题小于5个字符的数据进行删除

最近客户有个需求&#xff0c;就是他采集的时候&#xff0c;标题有些小于5字符的短标题的垃圾数据&#xff0c;进行清空处理&#xff0c;让我进行批量删除。废话不多说&#xff0c;接着干。 首先在dt根目录新建delmysql.php文件&#xff0c;代码如下&#xff1a; <?php r…

Tensorflow2 GPU 安装方法

一、Tensorflow2 GPU 安装方法 1. 首先安装Anaconda3环境2. 在Anaconda Prompt 中安装tensorflow23. 验证GPU是否可以使用 1. 首先安装Anaconda3环境 https://www.anaconda.com/ 2. 在Anaconda Prompt 中安装tensorflow2 conda update conda conda create -n tensorflow pyt…

华为智能企业上网行为管理安全解决方案(2)

本文承接&#xff1a; https://blog.csdn.net/qq_37633855/article/details/133339254?spm1001.2014.3001.5501 重点讲解华为智能企业上网行为管理安全解决方案的部署流程。 华为智能企业上网行为管理安全解决方案&#xff08;2&#xff09; 课程地址方案部署整体流程组网规划…

Python实用技术二:数据分析和可视化(2)

目录 一&#xff0c;多维数组库numpy 1&#xff0c;操作函数&#xff1a;​ 2&#xff0c;numpy数组元素增删 1&#xff09;添加数组元素 2&#xff09;numpy删除数组元素 3&#xff09;在numpy数组中查找元素 4&#xff09;numpy数组的数学运算 3&#xff0c;numpy数…

【数据结构】链表与LinkedList

作者主页&#xff1a;paper jie 的博客 本文作者&#xff1a;大家好&#xff0c;我是paper jie&#xff0c;感谢你阅读本文&#xff0c;欢迎一建三连哦。 本文录入于《JAVA数据结构》专栏&#xff0c;本专栏是针对于大学生&#xff0c;编程小白精心打造的。笔者用重金(时间和精…

计算机网络学习易错点

目录 概述 1.internet和Internet的区别 2.面向连接和无连接 3.不同的T 4.传输速率和传播速率 5.传播时延和传输时延&#xff08;发送时延&#xff09; 6.语法&#xff0c;语义和同步 一.物理层 1.传输媒体与物理层 2.同步通信和异步通信 3.位同步&#xff08;比特同…

windows WSL配置cuda,pytorch和jupyter notebook

机器配置 GPU: NVIDIA Quadro K2000 与 NVIDIA 驱动程序捆绑的CUDA版本 但按照维基百科的描述&#xff0c;我的GPU对应的compute capability3.0&#xff0c;允许安装的CUDA最高只支持10.2&#xff0c;如下所示。 为什么本地会显示11.4呢&#xff1f;对此&#xff0c;GPT是这…

数学建模Matlab之优化类方法

本文还是来源于http://t.csdnimg.cn/P5zOD&#xff0c;但肯定不可能只有这些内容&#xff0c;否则那位作者应该会打我……&#xff0c;在这里&#xff0c;只是讲解优化类问题比较常用的方法&#xff0c;以TSP问题为例&#xff0c;适合入门。 模拟退火 模拟退火是一种概率算法&a…

基于Cplex的人员排班问题建模求解(JavaAPI)

使用Java调用Cplex实现了阿里mindopt求解器的案例&#xff08;https://opt.aliyun.com/platform/case&#xff09;人员排班问题。 这里写目录标题 人员排班问题问题描述数学建模编程求解&#xff08;CplexJavaAPI&#xff09;求解结果 人员排班问题 随着现在产业的发展&#…

WPF 02

Grid容器 分行和分列 <Grid><Grid.RowDefinitions><!--2*&#xff1a;此行是下面一行的两倍--><RowDefinition Height"2*"/><RowDefinition/></Grid.RowDefinitions><Grid.ColumnDefinitions><ColumnDefinition/>…

【AI视野·今日Robot 机器人论文速览 第四十四期】Fri, 29 Sep 2023

AI视野今日CS.Robotics 机器人学论文速览 Fri, 29 Sep 2023 Totally 38 papers &#x1f449;上期速览✈更多精彩请移步主页 Interesting: &#x1f4da;NCF,基于Neural Contact Fields神经接触场的方法实现有效的外部接触估计和插入操作。 (from FAIR ) 操作插入处理结果&am…

ESP8266使用记录(四)

放上最终效果 ESP8266&Unity游戏 整合放进了坏玩具车遥控器里 最终只使用了mpu6050的yaw数据&#xff0c;因为roll值漂移…… 使用了https://github.com/ElectronicCats/mpu6050 整个流程 ESP8266取MPU6050数据&#xff0c;处理后通过udp发送给Unity显示出来 MPU6050_Z…

TensorFlow学习1:使用官方模型进行图片分类

前言 人工智能以后会越来越发达&#xff0c;趁着现在简单学习一下。机器学习框架有很多&#xff0c;这里觉得学习谷歌的 TensorFlow&#xff0c;谷歌的技术还是很有保证的&#xff0c;另外TensorFlow 的中文文档真的很友好。 文档&#xff1a; https://tensorflow.google.cn/…

ORACLE Redo Log Buffer 重做日志缓冲区机制的设计

最近和朋友包括一些国产数据库的研发人员交流&#xff0c;很多程序员认为 Oracle 已经过时&#xff0c;开源数据库或者他们研发的国产数据库才代表数据库发展的未来。甚至在很多交流会议上拿出自家产品的某一个功能点和 Oracle 对比就觉得已经遥遥领先。 实际上数据库系统的发展…

JVM机制理解与调优方案

作者&#xff1a;逍遥Sean 简介&#xff1a;一个主修Java的Web网站\游戏服务器后端开发者 主页&#xff1a;https://blog.csdn.net/Ureliable 觉得博主文章不错的话&#xff0c;可以三连支持一下~ 如有需要我的支持&#xff0c;请私信或评论留言&#xff01; 前言 很多Java开发…

电脑WIFI突然消失

文章目录 1. 现象2. 解决办法1&#xff1a;重新启用无线网卡设置3. 解决办法2&#xff1a;更新无线网卡驱动4. 解决办法3&#xff1a;释放静电5. 解决办法4&#xff1a;拆机并重新插拔无线网卡 1. 现象 如下图&#xff1a;电脑在使用过程中WIFI消失 设备管理器中的无线网卡驱…

【深度学习实验】卷积神经网络(六):自定义卷积神经网络模型(VGG)实现图片多分类任务

目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. 构建数据集&#xff08;CIFAR10Dataset&#xff09; a. read_csv_labels&#xff08;&#xff09; b. CIFAR10Dataset 2. 构建模型&#xff08;FeedForward&…

解决内网拉取企微会话存档代理问题的一种办法

问题&#xff1a;客户的服务都是内网的&#xff0c;不能直接访问外网&#xff1b;访问外网的话需要走kong网关才能出去。 会话存档官网说可以使用socket5、http方式拉取会话存档&#xff1b;我这边尝试了直接使用kong网关的ip和端口配置进去&#xff0c;是访问不了的 我后面就…