手动实现BERT

  本文重点介绍了如何从零训练一个BERT模型的过程,包括整体上BERT模型架构、数据集如何做预处理、MASK替换策略、训练模型和保存、加载模型和测试等。

一.BERT架构
  BERT设计初衷是作为一个通用的backbone,然后在下游接入各种任务,包括翻译任务、分类任务、回归任务等。BERT模型架构如下所示:

1.输入层
  BERT每次计算时输入两句话。
2.数据预处理
  包括移除不能识别的字符、将所有字母小写、多余的空格等。

3.随机将一些词替换为MASK
  BERT模型的训练过程包括两个子任务,其中一个即为预测被遮掩的词的原本的词,所以在计算之前,需要把句子中的一些词替换为MASK交给BERT预测。


4.编码句子
  把句子编码成向量,BERT同样也有位置编码层,以让处于不同位置的相同的词有不同的向量表示。与Transformer位置编码固定常量不同,BERT位置编码是一个可学习的参数。

5.编码器
  此处的编码器即为Transformer中的编码器,BERT使用了Transformer中的编码器来抽取文本特征。
6.预测两个句子的关系
  BERT的计算包括两个子任务,预测两个句子的关系为其中一个子任务,BERT要计算出输入的两个句子的关系,这一般是二分类任务。
7.预测MASK词
  这是BERT的另外一个子任务,要预测出句子中的MASK原本的词。

二.数据集介绍和预处理
1.数据集介绍
  数据集使用微软提供的MSR Paraphrase数据集进行训练,第1列的数字表示了这2个句子的意思是否相同,2列ID对于训练BERT模型没有用处,只需关注第1列和另外2列String。部分样例如下所示:

2.数据集预处理
  数据集预处理代码参考文献[2],处理后包括msr_paraphrase_data.csv和msr_paraphrase_vocab.csv这2个文件,样例数据如下所示:



三.PyTorch中的Transformer工具层
  本部分不再手工实现Transformer编解码器,更多的使用PyTorch中已实现的Transformer工具层,从而专注于BERT模型的构建。
1.定义测试数据
  模拟虚拟了2句话,每句话8个词,每句话的末尾有一些PAD,如下所示:

# 虚拟数据
import torch
# 假设有两句话,8个词
x = torch.ones(2, 8)
# 两句话中各有一些PAD
x[0, 6:] = 0
x[1, 7:] = 0
print(x)

  输出结果如下所示:

tensor([[1., 1., 1., 1., 1., 1., 0., 0.],[1., 1., 1., 1., 1., 1., 1., 0.]])

2.各个MASK的含义解释
  key_padding_mask作用是遮挡数据中的PAD位置,减少计算量;encode_attn_mask定义是否要忽略输入语句中某些词与词间的注意力,在编码器中是不需要的;decode_attn_mask定义是否忽略输出语句中某些词与词之间的注意力,在解码器中是需要的。如下所示:

# 2.各个MASK的含义解释
# 定义key_padding_mask
# key_padding_mask的定义方式,就是x中是pad的为True,否则是False
key_padding_mask = x == 0
print(key_padding_mask)# 定义encode_attn_mask
# 在encode阶段不需要定义encode_attn_mask
# 定义为None或者全False都可以
encode_attn_mask = torch.ones(8, 8) == 0
print(encode_attn_mask)# 定义decode_attn_mask
# 在decode阶段需要定义decode_attn_mask
# decode_attn_mask的定义方式是对角线以上为True的上三角矩阵
decode_attn_mask = torch.tril(torch.ones(8, 8)) == 0
print(decode_attn_mask)

  输出结果如下所示:

tensor([[False, False, False, False, False, False,  True,  True],[False, False, False, False, False, False, False,  True]])
tensor([[False, False, False, False, False, False, False, False],[False, False, False, False, False, False, False, False],[False, False, False, False, False, False, False, False],[False, False, False, False, False, False, False, False],[False, False, False, False, False, False, False, False],[False, False, False, False, False, False, False, False],[False, False, False, False, False, False, False, False],[False, False, False, False, False, False, False, False]])
tensor([[False,  True,  True,  True,  True,  True,  True,  True],[False, False,  True,  True,  True,  True,  True,  True],[False, False, False,  True,  True,  True,  True,  True],[False, False, False, False,  True,  True,  True,  True],[False, False, False, False, False,  True,  True,  True],[False, False, False, False, False, False,  True,  True],[False, False, False, False, False, False, False,  True],[False, False, False, False, False, False, False, False]])

3.编码数据
  将x编码为2×8×12,表示2句话、每句话8个词、每个词用12维的Embedding向量表示:

# 编码x
x = x.unsqueeze(2) # 在第2维增加一个维度
x = x.expand(-1, -1, 12) # 在第2维复制12份
print(x, x.shape)

  输出结果如下所示:

tensor([[[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],[[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]]) torch.Size([2, 8, 12])

4.多头注意力计算函数
  在计算多头注意力机制市需要做2次线性变化,一次是对入参的Q、K和V矩阵分别做线性变换,另一次是对注意力分数做线性变换,2次线性变换分别需要2组weight合bias参数,如下所示:

# 定义multi_head_attention_forward()所需要的参数
# in_proj就是Q、K、V线性变换的参数
in_proj_weight = torch.nn.Parameter(torch.randn(3 * 12, 12))
in_proj_bias = torch.nn.Parameter(torch.zeros((3 * 12)))
# out_proj就是输出时做线性变换的参数
out_proj_weight = torch.nn.Parameter(torch.randn(12, 12))
out_proj_bias = torch.nn.Parameter(torch.zeros(12))
print(in_proj_weight.shape, in_proj_bias.shape)
print(out_proj_weight.shape, out_proj_bias.shape)# 使用工具函数计算多头注意力
data = {# 因为不是batch_first的,所以需要进行变形'query': x.permute(1, 0, 2), # x原始为[2, 8, 12],x.permute为[8, 2, 12]'key': x.permute(1, 0, 2),'value': x.permute(1, 0, 2),'embed_dim_to_check': 12, # 用于检查维度是否正确'num_heads': 2, # 多头注意力的头数'in_proj_weight': in_proj_weight, # Q、K、V线性变换的参数'in_proj_bias': in_proj_bias, # Q、K、V线性变换的参数'bias_k': None,'bias_v': None,'add_zero_attn': False,'dropout_p': 0.2, # dropout的概率'out_proj_weight': out_proj_weight, # 输出时做线性变换的参数'out_proj_bias': out_proj_bias, # 输出时做线性变换的参数'key_padding_mask': key_padding_mask,'attn_mask': encode_attn_mask,
}
score, attn = torch.nn.functional.multi_head_attention_forward(**data)
print(score.shape, attn, attn.shape)

(1)bias_k、bias_v:是否要对K和V矩阵单独添加bias,一般设置为None。
(2)add_zero_attn:如果设置为True,那么会在Q、K的注意力结果中单独加一列0,一般设置为默认值False。
(3)key_padding_mask:是否要忽略语句中的某些位置,一般只需忽略PAD的位置。
(4)attn_mask:是否要忽略每个词之间的注意力,在编码器中一般只用全False的矩阵,在解码器中一般使用对角线以上全True的矩阵。
  输出结果如下所示:

torch.Size([36, 12]) torch.Size([36])
torch.Size([12, 12]) torch.Size([12])
torch.Size([8, 2, 12]) tensor([[[0.2083, 0.2083, 0.2083, 0.1042, 0.2083, 0.0000, 0.0000, 0.0000],[0.2083, 0.2083, 0.1042, 0.2083, 0.2083, 0.2083, 0.0000, 0.0000],[0.2083, 0.1042, 0.1042, 0.1042, 0.2083, 0.2083, 0.0000, 0.0000],[0.2083, 0.1042, 0.1042, 0.2083, 0.2083, 0.1042, 0.0000, 0.0000],[0.2083, 0.2083, 0.2083, 0.1042, 0.2083, 0.2083, 0.0000, 0.0000],[0.2083, 0.1042, 0.2083, 0.2083, 0.1042, 0.2083, 0.0000, 0.0000],[0.2083, 0.2083, 0.2083, 0.1042, 0.2083, 0.2083, 0.0000, 0.0000],[0.2083, 0.1042, 0.2083, 0.1042, 0.1042, 0.2083, 0.0000, 0.0000]],[[0.0893, 0.1786, 0.0893, 0.1786, 0.1786, 0.1786, 0.1786, 0.0000],[0.1786, 0.1786, 0.1786, 0.1786, 0.1786, 0.1786, 0.1786, 0.0000],[0.1786, 0.0000, 0.1786, 0.1786, 0.1786, 0.1786, 0.0893, 0.0000],[0.1786, 0.1786, 0.1786, 0.1786, 0.0893, 0.1786, 0.0893, 0.0000],[0.1786, 0.1786, 0.1786, 0.0000, 0.1786, 0.0893, 0.1786, 0.0000],[0.1786, 0.1786, 0.1786, 0.1786, 0.1786, 0.1786, 0.0893, 0.0000],[0.1786, 0.0893, 0.0893, 0.1786, 0.1786, 0.0893, 0.0000, 0.0000],[0.1786, 0.1786, 0.0893, 0.0893, 0.1786, 0.1786, 0.1786, 0.0000]]],grad_fn=<MeanBackward1>) torch.Size([2, 8, 8])

5.多头注意力层
  封装程度更高的多头注意力层实现方式如下所示:

# 使用多头注意力工具层
multihead_attention = torch.nn.MultiheadAttention(embed_dim=12, num_heads=2, dropout=0.2, batch_first=True)
data = {'query': x,'key': x,'value': x,'key_padding_mask': key_padding_mask,'attn_mask': encode_attn_mask,
}
score, attn = multihead_attention(**data)
print(score.shape, attn, attn.shape)

  输出结果如下所示:

torch.Size([2, 8, 12]) tensor([[[0.1042, 0.2083, 0.0000, 0.1042, 0.1042, 0.2083, 0.0000, 0.0000],[0.2083, 0.2083, 0.1042, 0.2083, 0.0000, 0.2083, 0.0000, 0.0000],[0.2083, 0.2083, 0.2083, 0.2083, 0.0000, 0.2083, 0.0000, 0.0000],[0.1042, 0.2083, 0.2083, 0.1042, 0.2083, 0.2083, 0.0000, 0.0000],[0.2083, 0.2083, 0.2083, 0.1042, 0.1042, 0.2083, 0.0000, 0.0000],[0.2083, 0.2083, 0.2083, 0.1042, 0.2083, 0.1042, 0.0000, 0.0000],[0.1042, 0.0000, 0.2083, 0.1042, 0.2083, 0.2083, 0.0000, 0.0000],[0.2083, 0.2083, 0.2083, 0.1042, 0.2083, 0.2083, 0.0000, 0.0000]],[[0.1786, 0.1786, 0.0893, 0.0000, 0.1786, 0.1786, 0.1786, 0.0000],[0.1786, 0.1786, 0.1786, 0.0893, 0.1786, 0.0893, 0.0893, 0.0000],[0.0893, 0.0893, 0.0893, 0.0893, 0.1786, 0.1786, 0.1786, 0.0000],[0.1786, 0.0893, 0.0893, 0.1786, 0.1786, 0.1786, 0.0893, 0.0000],[0.1786, 0.0893, 0.1786, 0.1786, 0.0893, 0.0893, 0.0000, 0.0000],[0.1786, 0.1786, 0.1786, 0.1786, 0.0000, 0.1786, 0.0893, 0.0000],[0.1786, 0.0000, 0.1786, 0.0893, 0.1786, 0.0893, 0.1786, 0.0000],[0.1786, 0.0893, 0.0893, 0.0893, 0.0893, 0.1786, 0.0893, 0.0000]]],grad_fn=<MeanBackward1>) torch.Size([2, 8, 8])

  其中,batch_first=True,表示input和output张量的shape为(batch, seq, feature)。默认为False,input和output张量的shape为(seq, batch, feature)。
6.编码器层
  编码器包含多个编码器层,其中batch_first表示输入的第1维度是否是batch_size,norm_first通过该参数指定是否将标准化层前置计算。如下所示:

# 使用单层编码器工具层
encoder_layer = torch.nn.TransformerEncoderLayer(d_model=12,                          # 词向量的维度nhead=2,                             # 多头注意力的头数dim_feedforward=24,                  # 前馈神经网络的隐层维度dropout=0.2,                         # dropout的概率activation=torch.nn.functional.relu, # 激活函数batch_first=True,                    # 输入数据的第一维是batchnorm_first=True)                     # 归一化层在前
data = {'src': x,                                 # 输入数据'src_mask': encode_attn_mask,             # 输入数据的mask'src_key_padding_mask': key_padding_mask, # 输入数据的key_padding_mask
}
out = encoder_layer(**data)
print(out.shape) #torch.Size([2, 8, 12])# 使用编码器工具层
encoder = torch.nn.TransformerEncoder(encoder_layer=encoder_layer,                  # 编码器层num_layers=3,                                 # 编码器层数norm=torch.nn.LayerNorm(normalized_shape=12)) # 归一化层
data = {'src': x, # 输入数据'mask': encode_attn_mask,                     # 输入数据的mask'src_key_padding_mask': key_padding_mask,     # 输入数据的key_padding_mask
}
out = encoder(**data)
print(out.shape) #torch.Size([2, 8, 12])

7.解码器层
  BERT当中不会用到Transformer的解码器,解码器包含多个解码器层,如下所示:

# 7.解码器层
#  使用单层解码器工具层
decoder_layer = torch.nn.TransformerDecoderLayer(    # 解码器层d_model=12,                          # 词向量的维度nhead=2,                             # 多头注意力的头数dim_feedforward=24,                  # 前馈神经网络的隐层维度dropout=0.2,                         # dropout的概率activation=torch.nn.functional.relu, # 激活函数batch_first=True,                    # 输入数据的第一维是batchnorm_first=True)                     # 归一化层在前
data = {'tgt': x,                                        # 解码输出的目标语句,即target'memory': x,                                     # 编码器的编码结果,即解码器解码时的根据数据'tgt_mask': decode_attn_mask,                    # 定义是否要忽略词与词之间的注意力,即decode_attn_mask'memory_mask': encode_attn_mask,                 # 定义是否要忽略memory内的部分词与词之间的注意力,一般不需要要忽略'tgt_key_padding_mask': key_padding_mask,        # 定义target内哪些位置是PAD,以忽略对PAD的注意力'memory_key_padding_mask': key_padding_mask,     # 定义memory内哪些位置是PAD,以忽略对PAD的注意力
}
out = decoder_layer(**data)
print(out.shape) #(2,8,12)# 使用编码器工具层
decoder = torch.nn.TransformerDecoder(    # 解码器层decoder_layer=decoder_layer,          # 解码器层num_layers=3,                         # 解码器层数norm=torch.nn.LayerNorm(normalized_shape=12))
data = {'tgt': x,'memory': x,'tgt_mask': decode_attn_mask,'memory_mask': encode_attn_mask,'tgt_key_padding_mask': key_padding_mask,'memory_key_padding_mask': key_padding_mask,
}
out = decoder(**data)
print(out.shape) #(2,8,12)

8.完整的Transformer模型
  Transformer主模型由编码器和解码器组成,如下所示:

# 使用Transformer工具模型
transformer = torch.nn.Transformer(d_model=12,               # 词向量的维度nhead=2,                             # 多头注意力的头数num_encoder_layers=3,                # 编码器层数num_decoder_layers=3,                # 解码器层数dim_feedforward=24,                  # 前馈神经网络的隐层维度dropout=0.2,                         # dropout的概率activation=torch.nn.functional.relu, # 激活函数custom_encoder=encoder,              # 自定义编码器,如果指定为None,那么会使用默认的编码器层堆叠num_encoder_layers层组成编码器custom_decoder=decoder,              # 自定义解码器,如果指定为None,那么会使用默认的解码器层堆叠num_decoder_layers层组成解码器batch_first=True,                    # 输入数据的第一维是batchnorm_first=True)                     # 归一化层在前
data = {'src': x,'tgt': x,'src_mask': encode_attn_mask,'tgt_mask': decode_attn_mask,'memory_mask': encode_attn_mask,'src_key_padding_mask': key_padding_mask,'tgt_key_padding_mask': key_padding_mask,'memory_key_padding_mask': key_padding_mask,
}
out = transformer(**data)
print(out.shape) #torch.Size([2, 8, 12])

四.手动实现BERT模型
  因为这部分代码较长,就不放出来了,详细参考文献[4]。需要说明的是BERT在训练阶段有两个子任务,分别为预测两句话的意思是否一致,以及被遮掩的词的原本的词。把编码器抽取的文本特征分别输入两个线性神经网络,并且以此计算这两个输出。重点说下random_replace()函数对所有句子的替换策略,如下所示:

# 定义随机替换函数
def random_replace(sent):# sent = [b,63]# 不影响原来的sentsent = sent.clone()# 替换矩阵,形状和sent一样,被替换过的位置是True,其他位置是Falsereplace = sent == -1# 遍历所有的词for i in range(len(sent)):for j in range(len(sent[i])):# 如果是符号就不操作了,只替换词if sent[i, j] <= 10:continue# 以0.15的概率进行操作if random.random() > 0.15:pass# 对被操作过的位置进行标记,这里的操作包括什么也不做replace[i, j] = True# 分概率做不同的操作p = random.random()# 以O.8的概率替换为MASKif p < 0.8:sent[i, j] = vocab.loc['<MASK>'].token# 以0.1的概率不替换elif p < 0.9:continue# 以0.1的概率替换成随机词else:# 随机生成一个不是符号的词rand_word = 0while rand_word <= 10:rand_word = random.randint(0, len(vocab) - 1)sent[i, j] = rand_wordreturn sent, replace

  每个句子中的每个词都有15%的概率被替换,而替换也不仅有替换为MASK这一种情况。在被判定为当前词要替换后,该词有80%的概率被替换为MASK,有10%的概率被替换为一个随机词,有10%的概率不替换为任何词。如下所示:


参考文献:
[1]《HuggingFace自然语言处理详解:基于BERT中文模型的任务实战》
[2]https://github.com/ai408/nlp-engineering/blob/main/20230625_HuggingFace自然语言处理详解/第14章:手动实现BERT_数据预处理.py
[3]https://github.com/ai408/nlp-engineering/blob/main/20230625_HuggingFace自然语言处理详解/第14章:手动实现BERT_PyTorch中的Transformer工具层.py
[4]https://github.com/ai408/nlp-engineering/blob/main/20230625_HuggingFace自然语言处理详解/第14章:手动实现BERT_训练和测试.py
[5]Bert模型的细节到底是怎么样的:https://www.zhihu.com/question/534763354
[6]BERT模型参数量:https://zhuanlan.zhihu.com/p/452267359
[7]HuggingFace Transformers最新版本源码解读:https://zhuanlan.zhihu.com/p/360988428
[8]NLP Course:https://huggingface.co/learn/nlp-course/zh-CN/chapter1/1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/91611.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android 使用Kotlin封装RecyclerView

文章目录 1.概述2.运行效果图3.代码实现3.1 扩展RecyclerView 3.2 扩展Adapter3.3 RecyclerView装饰绘制3.3.1 以图片实现分割线3.3.2 画网格线3.3.3空白的分割线3.3.4 不同方向上的分割线 3.4 使用方法 1.概述 在一个开源项目上看到了一个Android Kotlin版的RecyclerView封装…

分布式事务-TCC异常-空回滚

1、空回滚问题&#xff1a; 因为是全局事务&#xff0c;A服务调用服务C的try时服务出现异常服务B因为网络或其他原因还没执行try方法&#xff0c;TCC因为C的try出现异常让所有的服务执行cancel方法&#xff0c;比如B的try是扣减积分 cancel是增加积分&#xff0c;还没扣减就增…

Java初始化大量数据到Neo4j中(二)

接Java初始化大量数据到Neo4j中(一)继续探索&#xff0c;之前用create命令导入大量数据发现太过耗时&#xff0c;查阅资料说大量数据初始化到Neo4j需要使用neo4j-admin import 业务数据说明可以参加Java初始化大量数据到Neo4j中(一)&#xff0c;这里主要是将处理好的节点数据和…

竞赛无人机搭积木式编程(四)---2023年TI电赛G题空地协同智能消防系统(无人机部分)

竞赛无人机搭积木式编程&#xff08;四&#xff09; ---2023年TI电赛G题空地协同智能消防系统&#xff08;无人机部分&#xff09; 无名小哥 2023年9月15日 赛题分析与解题思路综述 飞控用户在学习了TI电赛往届真题开源方案以及用户自定义航点自动飞行功能方案讲解后&#x…

排序篇(二)----选择排序

排序篇(二)----选择排序 1.直接选择排序 基本思想&#xff1a; 每一次从待排序的数据元素中选出最小&#xff08;或最大&#xff09;的一个元素&#xff0c;存放在序列的起始位置&#xff0c;直到全部待排序的数据元素排完 。 直接选择排序: ​ 在元素集合array[i]–array[…

迭代器,可迭代对象,生成器

目录 结论&#xff1a; 1&#xff1a;可迭代对象&#xff1a; 2&#xff1a;生成器&#xff1a;概念如下&#xff1a; 3&#xff1a;迭代器的定义&#xff1a;要同时满足以下三点 一&#xff1a;可迭代对象的分类 二&#xff1a;迭代器的意义和应用场景 1&#xff1a;迭代…

红米手机 导出 通讯录 到电脑保存

不要搞什么 云服务 不要安装什么 手机助手 不要安装 什么app 用 usb 线 连接 手机 和 电脑 手机上会跳出 提示 选择 仅传输文件 会出现下面的 一个 盘 进入 MIUI目录 然后进入 此电脑\Redmi Note 5\内部存储设备\MIUI\backup\AllBackup\20230927_043337 如何没有上面的文件&a…

记一次springboot的@RequestBody json值注入失败的问题(字段大小写的问题)

有时候做后端开发时&#xff0c;难免会与算法联调接口&#xff0c;很多算法的变量命名时全部大写&#xff0c;在实际springmvc开发中会遇到无法赋值的问题。 先粘贴问题代码 entity类 Data NoArgsConstructor EqualsAndHashCode(callSuper true) ToString(callSuper true) …

应用在手机触摸屏中的电容式触摸芯片

触控屏&#xff08;Touch panel&#xff09;又称为触控面板&#xff0c;是个可接收触头等输入讯号的感应式液晶显示装置&#xff0c;当接触了屏幕上的图形按钮时&#xff0c;屏幕上的触觉反馈系统可根据预先编程的程式驱动各种连结装置&#xff0c;可用以取代机械式的按钮面板&…

Git分支管理

前言 文本将会向您介绍创建、查看、切换、合并、删除、合并、临时保存等分支管理操作 创建/查看/切换分支 [Fan_558VM-12-13-centos gitcode]$ git branch dev //创建分支 [Fan_558VM-12-13-centos gitcode]$ git branch //查看分支dev * master [Fan_558VM-12-13-centos…

ElasticSearch - 基于 JavaRestClient 操作索引库和文档

目录 一、RestClient操作索引库 1.1、RestClient是什么&#xff1f; 1.2、JavaRestClient 实现创建、删除索引库 1.2.1、前言 1.2.1、初始化 JavaRestClient 1.2.2、创建索引库 1.2.3、判断索引库是否存在 1.2.4、删除索引库 1.3、JavaRestClient 实现文档的 CRUD 1.3…

UE学习记录06----根据Actor大小自适应相机位置

背景&#xff1a; staticMesh 会根据业务需要随时变化&#xff0c;然后通过staticMesh的大小自适应相机位置&#xff0c;捕捉画面用来预览该模型&#xff0c;使模型在画布中不会太大导致显示不全&#xff0c;也不会太小 参考&#xff1a; UE实现相机聚焦物体功能_右弦GISer的…

机器学习小白理解之一元线性回归

关于机器学习&#xff0c;百度上一搜一大摞&#xff0c;总之各有各的优劣&#xff0c;有的非常专业&#xff0c;有的看的似懂非懂。我作为一名机器学习的门外汉&#xff0c;为了看懂这些公式和名词真的花了不少时间&#xff0c;还因此去着重学了高数。 不过如果不去看公式&…

数据结构--栈的实现

数据结构–栈的实现 1.栈的概念和结构&#xff1a; 栈的概念&#xff1a;栈是一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端 称为栈顶&#xff0c;另一端称为栈底。栈中的数据元素遵守后进先出LIFO&#xff08;Las…

PostMan的学习

PostMan的学习 目录 环境变量和全局变量接口关联内置动态参数以及自定义动态参数实现业务闭环Postman断言批量运行collection数据驱动之CSV文件和JSON文件测试必须带请求头的接口Mock Serviers 服务器Cookie鉴权NewmanPostManNewManjenkins实现接口测试持续集成 参考资料&am…

Kerberos常见报错汇总

一.kdb5_util: Password mismatch while reading master key from keyboard 1>.错误复现 2>.错误原因分析 在初始化Kerberos数据库时需要输入密码&#xff0c;2次密码输入不一致就会导致该错误。 3>.解决方案 重新执行"kdb5_util -r YINZHENGJIE.COM create -s…

Mendix中的依赖管理:npm和Maven的应用

序言 在传统java开发项目中&#xff0c;我们可以利用maven来管理jar包依赖&#xff0c;但在mendix项目开发Custom Java Action时&#xff0c;由于目录结构有一些差异&#xff0c;我们需要自行配置。同样的&#xff0c;在mendix项目开发Custom JavaScript Action时&#xff0c;…

数据集笔记:旧金山共享单车OD数据

数据地址&#xff1a;System Data | Bay Wheels | Lyft

使用不同尺寸的传感器拍照时,怎么保证拍出同样视场范围的照片?

1、问题背景 使用竞品机做图像效果对比时&#xff0c;我们通常都会要求拍摄的照片要视场范围一致&#xff0c;这样才具有可比性。之前我会考虑用同样焦距、同样分辨率的设备去拍照对比就可以了&#xff0c;觉得相机的视场范围只由镜头焦距来决定。 但如果对于不同尺寸的传感器…

【Java 进阶篇】MySQL 数据控制语言(DCL):管理用户权限

MySQL 是一个强大的关系型数据库管理系统&#xff0c;提供了丰富的功能和选项来管理数据库和用户。数据库管理员&#xff08;DBA&#xff09;通常使用数据控制语言&#xff08;Data Control Language&#xff0c;简称 DCL&#xff09;来管理用户的权限和访问。 本文将详细介绍…