第P7周—咖啡豆识别(1)

 数据集及wen件目录介绍:

数据集:工作台 - Heywhale.com

一、前期工作

1.1 数据详情

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warningswarnings.filterwarnings("ignore")             #忽略警告信息device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)import os,PIL,random,pathlibdata_dir = 'D:/P7/49-data/'
data_dir = pathlib.Path(data_dir)data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[3] for path in data_paths]
print(classeNames)image_count = len(list(data_dir.glob('*/*.png')))print("图片总数为:",image_count)

1.2 图片预处理: 

详见:写文章-CSDN创作中心icon-default.png?t=N7T8https://mp.csdn.net/mp_blog/creation/editor/133411331

train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸# transforms.RandomHorizontalFlip(), # 随机水平翻转transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])test_transform = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder("D:/P7/49-data",transform=train_transforms)
print(total_data)

 标签量化处理:

print(total_data.class_to_idx)

1.4 划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print(train_dataset, test_dataset)

二、搭建VGG—16模型 

2.1 搭建VGG模型

import torch.nn.functional as Fclass vgg16(nn.Module):def __init__(self):super(vgg16, self).__init__()# 卷积块1self.block1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)))# 卷积块2self.block2 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)))# 卷积块3self.block3 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)))# 卷积块4self.block4 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)))# 卷积块5self.block5 = nn.Sequential(nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)))# 全连接网络层,用于分类self.classifier = nn.Sequential(nn.Linear(in_features=512*7*7, out_features=4096),nn.ReLU(),nn.Linear(in_features=4096, out_features=4096),nn.ReLU(),nn.Linear(in_features=4096, out_features=4))def forward(self, x):x = self.block1(x)x = self.block2(x)x = self.block3(x)x = self.block4(x)x = self.block5(x)x = torch.flatten(x, start_dim=1)x = self.classifier(x)return xdevice = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))model = vgg16().to(device)
print(model)

                

2.2 模型信息 

 

三、模型训练

3.1 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

3.2  编写测试函数

 

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

3.3 模型训练 (完整代码)

import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision import datasets
import pathlib
import warningswarnings.filterwarnings("ignore")def main():device = torch.device("cuda" if torch.cuda.is_available() else "cpu")print(device)data_dir = 'D:/P7/49-data/'data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*'))classeNames = [str(path).split("\\")[3] for path in data_paths]print(classeNames)image_count = len(list(data_dir.glob('*/*.png')))print("图片总数为:", image_count)train_transforms = transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])test_transform = transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])total_data = datasets.ImageFolder("D:/P7/49-data", transform=train_transforms)print(total_data)train_size = int(0.8 * len(total_data))test_size = len(total_data) - train_sizetrain_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])print(train_dataset, test_dataset)batch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)class VGG16Lite(nn.Module):def __init__(self, num_classes=4):super(VGG16Lite, self).__init__()self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(64, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(128, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),)self.classifier = nn.Sequential(nn.Linear(256 * 28 * 28, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, num_classes),)def forward(self, x):x = self.features(x)x = x.view(x.size(0), -1)x = self.classifier(x)return xdevice = "cuda" if torch.cuda.is_available() else "cpu"print("Using {} device".format(device))model = VGG16Lite().to(device)print(model)import torch.optim as optimoptimizer = optim.Adam(model.parameters(), lr=1e-4)loss_fn = nn.CrossEntropyLoss()epochs = 40train_loss = []train_acc = []test_loss = []test_acc = []best_acc = 0best_model = Nonefor epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)if epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model = model.state_dict()train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)lr = optimizer.param_groups[0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,epoch_test_acc * 100, epoch_test_loss, lr))PATH = './best_model_lite.pth'torch.save(best_model, PATH)print('Done')if __name__ == '__main__':main()

 3.4 轻量化上述VGG16模型

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warningswarnings.filterwarnings("ignore")             #忽略警告信息def main():device = torch.device("cuda" if torch.cuda.is_available() else "cpu")print(device)import os,PIL,random,pathlibdata_dir = 'D:/P7/49-data/'data_dir = pathlib.Path(data_dir)data_paths  = list(data_dir.glob('*'))classeNames = [str(path).split("\\")[3] for path in data_paths]print(classeNames)image_count = len(list(data_dir.glob('*/*.png')))print("图片总数为:",image_count)train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸# transforms.RandomHorizontalFlip(), # 随机水平翻转transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。])test_transform = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。])total_data = datasets.ImageFolder("D:/P7/49-data",transform=train_transforms)print(total_data)print(total_data.class_to_idx)train_size = int(0.8 * len(total_data))test_size  = len(total_data) - train_sizetrain_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])print(train_dataset, test_dataset)batch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)import torch.nn.functional as Fclass vgg16(nn.Module):def __init__(self):super(vgg16, self).__init__()# 卷积块1self.block1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)))# 卷积块2self.block2 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)))# 卷积块3self.block3 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)))# 卷积块4self.block4 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)))# 卷积块5self.block5 = nn.Sequential(nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),nn.ReLU(),nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)))# 全连接网络层,用于分类self.classifier = nn.Sequential(nn.Linear(in_features=512*7*7, out_features=4096),nn.ReLU(),nn.Linear(in_features=4096, out_features=4096),nn.ReLU(),nn.Linear(in_features=4096, out_features=4))def forward(self, x):x = self.block1(x)x = self.block2(x)x = self.block3(x)x = self.block4(x)x = self.block5(x)x = torch.flatten(x, start_dim=1)x = self.classifier(x)return xdevice = "cuda" if torch.cuda.is_available() else "cpu"print("Using {} device".format(device))model = vgg16().to(device)print(model)# 统计模型参数量以及其他指标import torchsummary as summarysummary.summary(model, (3, 224, 224))# 训练循环def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_lossdef test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_lossimport copyoptimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)loss_fn    = nn.CrossEntropyLoss() # 创建损失函数epochs     = 40train_loss = []train_acc  = []test_loss  = []test_acc   = []best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 保存最佳模型到 best_modelif epoch_test_acc > best_acc:best_acc   = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))# 保存最佳模型到文件中PATH = './best_model.pth'  # 保存的参数文件名torch.save(model.state_dict(), PATH)print('Done')   if __name__ == '__main__':main()

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/90813.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

聊聊KISS(Keep It Simple, Stupid)原则

文章目录 1. 前言2. KISS原则的几项描述3. KISS原则和奥卡姆剃刀原则区别 1. 前言 KISS原则,是Keep It Simple, Stupid的缩写,翻译成中文就是“保持简单,愚蠢的人也能懂”。这是一种鼓励简单设计的设计原则。 KISS原则的主要思想是&#x…

python+pygame+opencv+gpt实现虚拟数字人直播(有趣的探索)

AI技术突飞猛进,不断的改变着人们的工作和生活。数字人直播作为新兴形式,必将成为未来趋势,具有巨大的、广阔的、惊人的市场前景。它将不断融合创新技术和跨界合作,提供更具个性化和多样化的互动体验,成为未来的一种趋…

Leetcode290. 单词规律

给定一种规律 pattern 和一个字符串 s ,判断 s 是否遵循相同的规律。 这里的 遵循 指完全匹配,例如, pattern 里的每个字母和字符串 s 中的每个非空单词之间存在着双向连接的对应规律。 解题思路:哈希 力扣(LeetCode&…

数据结构:堆的简单介绍

目录 堆的介绍:(PriorityQueue) 大根堆:根节点比左右孩子节点大 小根堆:根节点比左右孩子节点小 堆的存储结构: 为什么二叉树在逻辑上用满二叉树结构,而不是普通二叉树呢? 因为如果是普通二叉树会造成资源的浪费​编辑 堆的介绍:(PriorityQueue) 堆又称优先级队列,何为优先…

3 OpenCV两张图片实现稀疏点云的生成

前文: 1 基于SIFT图像特征识别的匹配方法比较与实现 2 OpenCV实现的F矩阵RANSAC原理与实践 1 E矩阵 1.1 由F到E E K T ∗ F ∗ K E K^T * F * K EKT∗F∗K E 矩阵可以直接通过之前算好的 F 矩阵与相机内参 K 矩阵获得 Mat E K.t() * F * K;相机内参获得的方式…

C/C++跨平台构建工具CMake入门

文章目录 1.概述2.环境准备2.1 安装编译工具2.2 安装CMake 3.编译一个示例程序总结 1.概述 本人一直对OpenGL的3d渲染很感兴趣,但是苦于自己一直是Android开发,没有机会接触这方面的知识。就在最近吗,机会来了,以前一个做3D渲染的…

【C/C++】C/C++面试八股

C/C面试八股 C和C语言的区别简单介绍一下三大特性多态的实现原理虚函数的构成原理虚函数的调用原理虚表指针在什么地方进行初始化的?构造函数为什么不能是虚函数虚函数和纯虚函数的区别抽象类类对象的对象模型内存对齐是什么?为什么要内存对齐static关键…

微信公众号网页授权登录获取用户基本信息

概述 微信公众号网页授权登录后微信获取用户基本信息,部署即可运行完整demo 详细 一、前言 (1)适合人群 1,JAVA服务端开发人员 2,初级人员开发人员 3,了解spring springboot maven 3,了…

k8s部署gin-vue-admin框架、gitlab-ci、jenkins pipeline 、CICD

测试环境使用的jenkins 正式环境使用的gitlab-ci 测试环境 创建yaml文件 apiVersion: v1 kind: ConfigMap metadata:name: dtk-go-tiktok-admin-configlabels:app.kubernetes.io/name: dtk-go-tiktok-adminapp.kubernetes.io/business: infrastructureapp.kubernetes.io/run…

中国312个历史文化名镇及景区空间点位数据集

一部中华史,既是人类创造丰富物质财富的奋头史,又是与自然共生共存的和谐史不仅留存下悠久丰富的人文思想和情怀,还在各处镌刻下可流传的生活场景,历史文化名镇(以下简称:名镇)就是这样真实的历史画卷。“镇”是一方的政治文化中心…

Elasticsearch:使用 Elasticsearch 进行语义搜索

在数字时代,搜索引擎在通过浏览互联网上的大量可用信息来检索数据方面发挥着重要作用。 此方法涉及用户在搜索栏中输入特定术语或短语,期望搜索引擎返回与这些确切关键字匹配的结果。 虽然关键字搜索对于简化信息检索非常有价值,但它也有其局…

红黑树是如何实现的?

文章目录 一、红黑树的概念二、红黑树的性质三、红黑树和AVL树对比四、红黑树的插入1. 红黑树的结点定义2. 父亲的颜色3. 叔叔的颜色为红色4. 叔叔不存在5. 叔叔存在且为黑6. 插入的抽象图 五、红黑树的验证1. 检查平衡2. 计算高度与旋转次数3. 验证 六、 红黑树与AVL树的比较 …

【数据结构】——顺序表详解

大家好!当我们学习了动态内存管理后,就可以写一个管理数据的顺序表了!!! 顺序表的理解: 线性表是最基本、最简单、也是最常用的一种数据结构。线性表(linear list)是数据结构的一种…

青藏高原1-km分辨率生态环境质量变化数据集(2000-2020)

青藏高原平均海拔4000米以上,人口1300万,是亚洲九大河流的源头,为超过15亿人口提供淡水、食物和其他生态系统服务,被誉为地球第三极和亚洲水塔。然而,在该地区的人与自然的关系的研究是有限的,尤其是在精细…

高德地图根据两点的经纬度计算两点之间的距离(修正版)

SQL语句可以用来计算两个经纬度之间的距离。下面是一个示例的SQL语句: SELECT id, ( 6371 * ACOS( COS( RADIANS( lat1 ) ) * COS( RADIANS( lat2 ) ) * COS( RADIANS( lng2 ) - RADIANS( lng1 ) ) SIN( RADIANS( lat1 ) ) * SIN( RADIANS( lat2 ) ) ) ) AS dista…

PyTorch - 模型训练损失 (Loss) NaN 问题的解决方案

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/133378367 在模型训练中,如果出现 NaN 的问题,严重影响 Loss 的反传过程,因此,需要加入一些微小值…

【RabbitMQ实战】07 3分钟部署一个RabbitMQ集群

一、集群的安装部署 我们还是利用docker来安装RabbitMQ集群。3分钟安装一个集群,开始。 前提条件,docker安装了docker-compose。如果没安装的话,参考这里 docker-compose文件参考bitnami官网:https://github.com/bitnami/contai…

巧用@Conditional注解根据配置文件注入不同的bean对象

项目中使用了mq,kafka两种消息队列进行发送数据,为了避免硬编码,在项目中通过不同的配置文件自动识别具体消息队列策略。这里整理两种实施方案,仅供参考! 方案一:创建一个工具类,然后根据配置文…

Swift 周报 第三十八期

文章目录 前言新闻和社区苹果自研调制解调器芯片受挫:速度太慢容易过热,落后高通 3 年App Store 现已接受适用于最新版操作系统的 App 和游戏提交 提案通过的提案正在审查的提案驳回的提案 Swift论坛推荐博文话题讨论关于我们 前言 本期是 Swift 编辑组…

vue 实现弹出菜单,解决鼠标点击其他区域的检测问题

弹出菜单应该具有的功能,当鼠标点击其他区域时,则关闭该菜单。 问题来了,怎么检测鼠标点击了其他区域而不是当前菜单? 百度“JS检测区域外的点击事件”,会发现有很多方法,有递归检测父元素,有遍…