【DTEmpower案例操作教程】向导式建模

DTEmpower是由天洑软件自主研发的一款通用的智能数据建模软件,致力于帮助工程师及工科专业学生,利用工业领域中的仿真、试验、测量等各类数据进行挖掘分析,建立高质量的数据模型,实现快速设计评估、实时仿真预测、系统参数预警、设备状态监测等工程应用。软件内置有图形化、零编码的数据分析建模环境,围绕数据清理、特征生成、敏感性分析和模型训练等环节提供丰富的AI算法,提供从模型搭建到模型管理应用的一站式解决方案,学习门槛低、模型质量高,零基础用户也能快速挖掘得到优秀的数据模型。

一、案例描述

图形化的建模方法需要通过节点拖拽的方式搭建建模流程,并且通常需要对单个建模节点的参数进行多次调试,重复运行。与图形化建模方式不同的是,向导式建模默认配置一套完整的建模流程供用户使用,并且支持对流程中多个节点参数一键式的组合调试,非常便于用户开展数据分析和建模工作。本案例中的数据集为某风机制造厂商提供的结构应力评估数据集,目标是快速评估测点的结构应力。数据集中包含15维输入(V1~V15)和27维输出(EQV1~EQV27),以其中两个输出为例通过向导式建模建立输入输出之间的回归映射模型。

二、操作流程

1)新建项目

双击打开DTEmpower软件,即可进入到如图1所示的界面。单击新建项目,即可创建一个临时项目文件,需要注意的是,临时创建的项目文件不会自动保存。如果想要保存项目文件,用户可以进入到项目中选择“文件-保存”,就可以保存工程文件到自己想要的指定位置。

图1 新建项目

2)添加数据集

新建项目之后,即会进入到DTEmpower的工程主页面,如图2所示。

图2 工程主页

进入工程主页之后,点击“导入数据”,即跳出数据集文件上传窗口。点击窗口中的“选择文件”按钮,即可选择本地磁盘中的数据文件加载至当前项目中,如图3所示。

图3 上传原始数据

数据集添加完成后即出现在左侧的资源菜单中,如图4所示。

图4 数据集上传结果

3)搭建向导式建模流程

通过数据视图右上方的“数据建模”按钮,进入向导式建模的入口,如图5所示。

图5 向导式建模入口

弹出数据建模窗口后,在向导模式中选择风力机强度数据集,目标变量设置为EQV1,并用回归训练的方式拟合目标变量和输入变量的映射关系,如图6所示。

图6 向导式建模入口配置

配置好向导模式后点击确定按钮就完成了向导式建模的流程搭建,如图7所示。

图7 向导式建模流程搭建完成

4)建模流程配置

在开始模型训练之前用户可以自由配置建模流程中的各个环节,如图8所示,点击配置按钮,即可进入向导式建模的流程配置。

图8 向导式建模流程配置入口

如图9所示为向导式建模的配置面板,包括基础配置、特征工程和模型配置三部分内容。

图9 向导式建模流程配置面板

5)基础配置

基础配置包括建模模板、目标变量和训练等级三部分。其中建模模板为向导式建模入口配置时所设定,在设置目标变量时可以添加新的变量或删除已设置的变量。并且向导式建模提供了两个训练等级,为方便起见,本案例中选择快速的模型训练方式。

图10 向导式中的两个训练等级

6)特征工程配置

特征工程配置包括特征处理、异常点清理、敏感性分析、数据降维和数据变换。本案例中通过特征处理将模型的输入变量设置为V1~V15,输出变量设置为EQV1,如图11所示。

图11 特征处理示意图

如图12所示,本案例中异常点清理比例配置为5%,并设置快速粗筛的异常点识别等级。

图12 异常点清理配置

敏感性分析可使用户选择对目标变量重要性最大的若干个特征进行后续的建模,如图13所示,本案例中选择了重要性最大的5个、8个和12个特征。

图13 敏感性分析配置

数据降维是特征选择后对输入数据的进一步压缩提纯,如图14所示,本案例开启数据降维后选择线性降维的方法,并指定累计贡献率作为降维的标准,对输入特征进行压缩。

图14 数据降维配置

数据降维后可进行数据变换的配置,如图15所示,本案例分别对输入变量和输出变量进行Z-score和Robust变换。

图15 数据变换配置

7)模型配置

模型配置包括训练测试集划分、算法选择、精度指标和优化配置4部分内容。本案例中的训练测试集来自同一份数据集,因此数据集来源选择基于同一数据集拆分,测试集占比配置为默认的25%。

图16 训练/测试集配置

训练算法选择默认的基础线性回归和梯度提升决策树两种算法,精度指标和优化配置都选用默认配置。配置完成之后点击保存按钮。

8)模型训练和结果查看

建模流程配置完成之后点击训练按钮,如图17,即可开始模型的训练。

图17 开启模型训练

模型训练完成之后,向导式建模会以图表的形式向用户展示模型的评价指标。如图18展示了EQV1目标变量的建模评价结果,线性回归模型的R2指标在0.2左右,而GBDT模型的R2指标在0.4左右,说明适合用非线性模型建立EQV1目标变量和输入变量之间的映射关系。

图18 查看建模结果

至此,已经完成了向导式建模的流程搭建和模型训练,后续可通过优化配置等选项进一步提高模型精度。

DTEmpower更多详细介绍及软件试用,请搜索“天洑软件”前往官网下载试用。试用无需申请license,软件安装后可直接免费试用30天。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/90511.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

X509证书结构

使用ASN.1语言描述,我们可以将X509Certificate抽象为以下结构: Certificate :: SEQUENCE {tbsCertificate TBSCertificate,signatureAlgorithm AlgorithmIdentifier,signature BIT STRING }即基本证书域、签名算法、签名值。 其…

手机上记录的备忘录内容怎么分享到电脑上查看?

手机已经成为了我们生活中不可或缺的一部分,我们用它来处理琐碎事务,记录生活点滴,手机备忘录就是我们常用的工具之一。但随着工作的需要,我们往往会遇到一个问题:手机上记录的备忘录内容,如何方便地分享到…

设计模式——3. 抽象工厂模式

1. 说明 抽象工厂模式(Abstract Factory Pattern)是一种创建型设计模式,它提供了一种创建一组相关或依赖对象的方式,而无需指定它们的具体类。抽象工厂模式是工厂模式的扩展,它关注于创建一组相关的对象家族,而不仅仅是一个单一的对象。 抽象工厂模式通常涉及以下几个角…

微信小游戏从零到上线系列文章整理,建议收藏

引言 本系列是《从零开始开发贪吃蛇小游戏到上线系列》,欢迎大家关注分享收藏订阅。 大家中秋快乐,我是亿元程序员,一位有着8年游戏行业经验的主程。前面笔者给大家讲解了微信小游戏如何从零到上线的流程。可能很多小伙伴都还没有看到。 本…

【Oracle】Oracle系列之十一--PL/SQL

文章目录 往期回顾前言1. PL/SQL语句块组成2. 变量的声明与使用(1)变量声明(2)变量赋值 3. 控制语句(1)分支语句(2)循环语句 4. 异常处理(1)系统异常&#xf…

某高校的毕设

最近通过某个平台接的单子,最后Kali做的测试没有公开可以私聊给教程。 下面是规划与配置 1.vlan方面:推荐一个vlan下的所有主机为一个子网网段 连接电脑和http客户端的接口配置为access接口 交换机与交换机或路由器连接的接口配置为trunk接口---也可以…

Golang中的类型转换介绍

Golang中存在4种类型转换,分别是:断言、显式、隐式、强制。下面我将一一介绍每种转换使用场景和方法 一、断言类型转换 主要是判断变量是否可以转换成某一类型。断言主要用于变量是interface{}类型(接口类型)的情况,…

Python-表白小程序练习

测试代码 在结果导向的今天,切勿眼高于顶,不论用任何方法能转换、拿出实际成果东西才是关键,即使一个制作很简易的程序,你想将其最终生成可运行的版本也是需要下一番功夫的。不要努力成为一个嘴炮成功者,要努力成为一个有价值的人…

阿里云网络、数据中心和服务器技术创新优势说明

阿里云服务器技术创新、网络技术创新、数据中心技术创新和智能运维:云服务器方升架构、自研硬件、自研存储硬件AliFlash和异构计算加速平台,以及全自研网络系统技术创新和数据中心巴拿马电源、液冷技术等技术创新说明,阿里云百科aliyunbaike.…

conan入门(二十八):解决conan 1.60.0下 arch64-linux-gnu交叉编译openssl/3.1.2报错问题

上一篇博客《conan入门(二十七):因profile [env]字段废弃导致的boost/1.81.0 在aarch64-linux-gnu下交叉编译失败》解决了conan 1.60.0交叉编译boost/1.80.1的问题后,我继续交叉编译openssl/3.1.2时又报错了 conan install openssl/3.1.2 -pr:h aarch64-linux-gnu.…

Linux--进程间通信之命名管道

目录 前言概念命名管道的创建命名管道特性 命名管道通信建立连接资源处理 Client && Server通信总结 前言 上一篇文章介绍匿名管道的进程间通信只适合在具有血缘关系的进程间进行通信,但是如果我们想让两个不相关的进程实现通信,使用匿名管道显…

某企查ymg_ssr列表详情

js篇— 今天来看下某企查的列表详情–侵删 header发现这个参数 先断点一下 然后上一步 就到了这个地方 就开始扣一下这个js 三大段,先不解混淆了, 给a粘贴出来 ,去掉自执行 给结果稍微改一下 缺windows,开始补环境 直接上…

Linux常见指令(1)

Linux常见指令[1] 一.前言1.操作系统简述 二.Linux常见指令1.登录Xshell2.Linux下的常见命令1.pwd2.ls1.ls -a2.ls -d3.ls -l 3.cd Linux中的文件系统1.文件的相关知识2.Linux下目录结构的认识1.什么叫做路径?2.Linux的整体目录结构3.为什么要有路径呢?4.绝对路径与相对路径 …

常识判断 --- 科技常识

目录 力与热 光和声 航空成就 垃圾分类 百科知识 血型 二十四节气歌 春雨惊春清谷天 夏满忙夏暑相连 秋处露秋寒霜降 冬雪雪冬小大寒 力与热 光和声 航空成就 垃圾分类 百科知识 血型

ThemeForest – Canvas 7.2.0 – 多用途 HTML5 模板

ThemeForest 上的 HTML 网站模板受到全球数百万客户的喜爱。与包含网站所有页面并允许您在 WP 仪表板中自定义字体和样式的 WordPress 主题不同,这些设计模板是用 HTML 构建的。您可以在 HTML 编辑器中编辑模板,但不能在 WordPress 上编辑模板&#xff0…

35 LRU缓存

LRU缓存 题解1 双map(差2个testcases)题解2 哈希表双向链表(参考)题解3 STL:listunordered_map 请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类: LRUCache(int capacity) 以 正…

SpringMVC+统一表现层返回值+异常处理器

一、统一表现层返回值 根据我们不同的处理方法,返回的数据格式都会不同,例如添加只返回true|false,删除同理,而查询却返回数据。 Result类 为此我们封装一个result类来用于表现层的返回。 public class Result {//描述统一格式…

国庆中秋喜相逢

鲁迅先生曾经说过,“一个国家的文学,就是那个民族心灵的缩影。”在这个充满着诗与远方的中秋佳节,我们迎来了又一个国庆节,不由自主地感慨起这个祖国的壮美与辉煌。 中秋节,是中华民族传统的佳节之一,也是…

关于:Java8新特性函数式编程 - Lambda、Stream流、Optional

函数式编程 stream流 1.常用方法 1.1中间操作 filter ​ 可以对流中的元素进行条件过滤&#xff0c;符合过滤条件的才能继续留在流中 例如&#xff0c;打印所有姓名长度大于1的作家的姓名 List<Author> authors getAuthors(); authors.stream().filter(author -&g…

publicPath:打包时的配置

vue项目&#xff0c;执行打包命令后&#xff0c;会在项目的根目录中自动创建一个文件夹dist,dist中的文件就是打包后的文件&#xff0c;只需要放到服务器中即可。 【默认情况下&#xff0c;用的绝对路径&#xff0c;需要放到服务器的根目录打开。】 如果希望放到子目录也能运行…