路径类dp
1.矩阵的最小路径和_牛客题霸_牛客网
#include<iostream>
#include<cstring>
using namespace std;const int N = 510;
int f[N][N];
int n, m;int main()
{cin >> n >> m;memset(f, 0x3f3f3f, sizeof(f));f[0][1] = 0;for (int i = 1; i <= n; i++){for (int j = 1; j <= m; j++){int x; cin >> x;f[i][j] = min(f[i - 1][j], f[i][j - 1]) + x;}}cout << f[n][m];return 0;
}
2.「木」迷雾森林
#include<iostream>using namespace std;const int N = 3e3 + 10;
int n, m;
int a[N][N];
int f[N][N];//到i,j位置的方案数int main()
{cin >> n >> m;for (int i = 1; i <= n; i++){for (int j = 1; j <= m; j++){scanf("%d",& a[i][j]);}}//初始化f[n][0] = 1;for (int i = n; i >= 1; i--){for (int j = 1; j <= m; j++){if (a[i][j] == 1)continue;f[i][j] = (f[i + 1][j] + f[i][j - 1])%2333;}}cout << f[1][m] << endl;return 0;
}
3.P1002 [NOIP 2002 普及组] 过河卒 - 洛谷
标记马的位置
#include<iostream>using namespace std;typedef long long LL;//统计结果是一个阶乘,很大,要使用long long ,不然的话过不了int n, m, a, b;
const int N = 25;
LL f[N][N];//记录从1 1到 i j的路径的条数LL ret = 0;
//实现check函数
bool check(int i, int j)
{if (i == a && j == b)return true;//正好在马的位置else if (abs(i - a) + abs(j - b) == 3 && i != a && j != b)return true;//距离3,并且不再十字线上return false;
} int main()
{cin >> n >> m >> a >> b;//给出的是从0 0 开始的,而我们要的是从1 1开始的n++, m++, a++, b++;//初始化f[0][1] = 1;for (int i = 1; i <= n; i++){for (int j = 1; j <= m; j++){if (check(i, j))continue;//检测是否会被马吃到f[i][j] = f[i - 1][j] + f[i][j - 1];}}cout << f[n][m] << endl;return 0;
}
4.P1004 [NOIP 2000 提高组] 方格取数 - 洛谷
#include<iostream>using namespace std;const int N = 15;
int f[N * 2][N][N];//两个人同时出发,走相同的路径长度s,一个在 i1 ,另一个在i2,此时的最大路径和
int a[N][N];//记录数据int main()
{int n; cin >> n;int x, y, w; while (cin >> x >> y >> w,x)//输入x,y,z知道为0 ,就停止输入{a[x][y] = w;}//遍历for (int s = 2; s <= 2 * n; s++)//路径长度在 2~2*n之间,从1 1开始。{for (int i1 = 1; i1 <= n; i1++)//遍历i1{for (int i2 = 1; i2 <= n; i2++)//遍历i2{int j1 = s - i1;//根据s算出纵坐标int j2 = s - i2;//根据s算出纵坐标if (j1 <= 0 || j1 > n || j2 <= 0 || j2 > n)//判断纵坐标是否出界{continue;}int t = f[s - 1][i1][i2];//左左t = max(t, f[s - 1][i1 - 1][i2]);//上左t = max(t, f[s - 1][i1][i2 - 1]);//左上t = max(t, f[s - 1][i1 - 1][i2 - 1]);//上上if (i1 == i2)//是否在同一坐标,在,加一个即可f[s][i1][i2] = t + a[i1][j1];else//不再,两个都要加f[s][i1][i2] = t + a[i1][j1]+a[i2][j2];}}}cout << f[n * 2][n][n] << endl;return 0;
}