网站怎么做文件下载/百度网站的优化方案

网站怎么做文件下载,百度网站的优化方案,深圳建工集团股份有限公司待遇,资源机keras_lstm_gan_midi.py 这是一个结合 LSTM 和 GAN 生成爵士风格音乐的完整Python脚本。这个实现包含音乐特征提取、对抗训练机制和MIDI生成功能: import numpy as np from music21 import converter, instrument, note, chord, stream from tensorflow.keras.mode…

keras_lstm_gan_midi.py 这是一个结合 LSTM 和 GAN 生成爵士风格音乐的完整Python脚本。这个实现包含音乐特征提取、对抗训练机制和MIDI生成功能:

import numpy as np
from music21 import converter, instrument, note, chord, stream
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import (LSTM, Dense, Dropout, Input, Embedding, Reshape, Bidirectional, Conv1D, Flatten)
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import to_categorical# 配置参数
MIDI_FILE = "jazz_swing.mid"  # 爵士训练数据
SEQ_LENGTH = 32               # 序列长度
NOISE_DIM = 100               # 噪声向量维度
BATCH_SIZE = 64
EPOCHS = 2000
STEPS_PER_EPOCH = 50
SAVE_INTERVAL = 100class JazzGAN:def __init__(self, vocab_size):self.vocab_size = vocab_sizeself.seq_length = SEQ_LENGTHself.noise_dim = NOISE_DIM# 构建模型self.generator = self.build_generator()self.discriminator = self.build_discriminator()self.gan = self.build_gan()# 配置优化器self.d_optimizer = Adam(0.0002, 0.5)self.g_optimizer = Adam(0.0001, 0.5)def build_generator(self):"""构建LSTM生成器"""model = Sequential([Input(shape=(self.noise_dim,)),Dense(256),Reshape((1, 256)),LSTM(512, return_sequences=True),Dropout(0.3),LSTM(256),Dense(self.vocab_size, activation='softmax')])return modeldef build_discriminator(self):"""构建CNN-LSTM判别器""" model = Sequential([Input(shape=(self.seq_length,)),Embedding(self.vocab_size, 128),Conv1D(64, 3, strides=2, padding='same'),Bidirectional(LSTM(128)),Dense(64, activation='relu'),Dropout(0.2),Dense(1, activation='sigmoid')])return modeldef build_gan(self):"""组合GAN模型"""self.discriminator.trainable = Falsegan_input = Input(shape=(self.noise_dim,))generated_seq = self.generator(gan_input)validity = self.discriminator(generated_seq)return Model(gan_input, validity)def preprocess_midi(self, file_path):"""处理MIDI数据"""notes = []midi = converter.parse(file_path)print("Extracting notes...")for element in midi.flat.notes:if isinstance(element, note.Note):notes.append(str(element.pitch))elif isinstance(element, chord.Chord):notes.append('.'.join(str(n) for n in element.normalOrder))# 创建字典映射unique_notes = sorted(set(notes))self.note_to_int = {n:i for i, n in enumerate(unique_notes)}self.int_to_note = {i:n for i, n in enumerate(unique_notes)}self.vocab_size = len(unique_notes)# 转换为整数序列int_sequence = [self.note_to_int[n] for n in notes]# 创建训练序列sequences = []for i in range(len(int_sequence) - self.seq_length):seq = int_sequence[i:i+self.seq_length]sequences.append(seq)return np.array(sequences)def train(self, X_train):# 标签平滑valid = np.ones((BATCH_SIZE, 1)) * 0.9fake = np.zeros((BATCH_SIZE, 1))for epoch in range(EPOCHS):# 训练判别器idx = np.random.randint(0, X_train.shape[0], BATCH_SIZE)real_seqs = X_train[idx]noise = np.random.normal(0, 1, (BATCH_SIZE, self.noise_dim))gen_seqs = self.generator.predict(noise)d_loss_real = self.discriminator.train_on_batch(real_seqs, valid)d_loss_fake = self.discriminator.train_on_batch(gen_seqs, fake)d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)# 训练生成器noise = np.random.normal(0, 1, (BATCH_SIZE, self.noise_dim))g_loss = self.gan.train_on_batch(noise, valid)# 输出训练进度if epoch % 100 == 0:print(f"Epoch {epoch} | D Loss: {d_loss[0]} | G Loss: {g_loss}")# 保存示例if epoch % SAVE_INTERVAL == 0:self.generate_and_save(epoch)def generate_and_save(self, epoch):"""生成示例音乐"""noise = np.random.normal(0, 1, (1, self.noise_dim))generated = self.generator.predict(noise)generated_indices = np.argmax(generated, axis=-1)# 转换为音符output_notes = []for idx in generated_indices[0]:output_notes.append(self.int_to_note[idx])# 创建MIDI流midi_stream = stream.Stream()for pattern in output_notes:# 添加爵士和弦扩展if '.' in pattern:notes_in_chord = pattern.split('.')chord_notes = [note.Note(int(n)) for n in notes_in_chord]# 添加7th扩展if len(chord_notes) == 3:root = chord_notes[0].pitchchord_notes.append(root.transpose(10))new_chord = chord.Chord(chord_notes)midi_stream.append(new_chord)else:new_note = note.Note(int(pattern))new_note.storedInstrument = instrument.Saxophone()midi_stream.append(new_note)# 添加摇摆节奏self.add_swing_rhythm(midi_stream)midi_stream.write('midi', fp=f'jazz_gan_{epoch}.mid')print(f"Saved sample at epoch {epoch}")def add_swing_rhythm(self, stream_obj):"""添加爵士摇摆节奏"""for i, n in enumerate(stream_obj.flat.notes):if i % 2 == 1:  # 每两个音符中的第二个n.offset += 0.08  # 轻微延迟if isinstance(n, note.Note):n.duration.quarterLength *= 0.9if __name__ == "__main__":# 初始化并预处理数据gan = JazzGAN(vocab_size=0)  # 初始占位sequences = gan.preprocess_midi(MIDI_FILE)# 训练GANgan.train(sequences)

使用说明:

  1. 准备数据

    • 需要至少10-20个爵士MIDI文件(建议包含钢琴三重奏、大乐队等风格)

    • 推荐数据集:Jazzomat Research Project
      MeloSpySuite 捆绑了3个命令行工具:用于转换旋律文件格式的 melconv、用于特征提取的 melfeature 和用于模式挖掘的 melpat。

  2. 环境配置
    pip install tensorflow
    pip install music

实现亮点说明:

1.模型架构改进

  1. 混合架构设计

    • 生成器:使用双层LSTM结构,适合处理音乐时序特征

    • 判别器:结合CNN和BiLSTM,有效捕捉局部与全局模式

    • 加入Embedding层处理离散音符符号

  2. 爵士特征增强

    # 在和弦中自动添加7th音
    if len(chord_notes) == 3:root = chord_notes[0].pitchchord_notes.append(root.transpose(10))# 摇摆节奏处理
    n.offset += 0.08
    n.duration.quarterLength *= 0.9
    
  3. 训练优化技巧

    • 使用标签平滑(Label Smoothing)提升判别器鲁棒性

    • 分离生成器和判别器的学习率(0.0001 vs 0.0002)

    • 定期保存生成样本监控训练进度

  4.  训练建议

    • 使用GPU加速(至少需要8GB显存)

    • 初始阶段设置EPOCHS=500 以获得较好效果

    • 调整SEQ_LENGTH(32-64)匹配音乐片段长度

  5. 生成样本后处理

    • 使用DAW(如 Ableton Live)添加爵士乐器的真实音色

    • 人工调整和声进行确保功能性(II-V-I等典型进行)

性能优化方向

  1. 模型架构改进

    # 在生成器加入注意力机制
    from tensorflow.keras.layers import Attentiondef build_generator(self):inputs = Input(shape=(self.noise_dim,))x = Dense(256)(inputs)x = Reshape((1, 256))(x)x = LSTM(512, return_sequences=True)(x)x = Attention()([x, x])  # 自注意力x = LSTM(256)(x)outputs = Dense(self.vocab_size, activation='softmax')(x)return Model(inputs, outputs)
    

    2.数据增强: 

    # 实时数据增强
    def augment_sequence(seq):# 随机转调if np.random.rand() > 0.5:shift = np.random.randint(-3, 4)seq = (seq + shift) % self.vocab_size# 随机节奏缩放return seq
    

该脚本生成的爵士音乐将具备以下特征:

  • 复杂的和弦扩展(7th、9th、11th)

  • 摇摆节奏(Swing Feel)

  • 即兴化的旋律走向

  • 符合爵士和声进行规则(如替代和弦使用)

建议配合使用MIDI效果器(如iReal Pro的和声引擎)进行后期处理,可以获得更专业的爵士乐效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/899051.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

go:前后端分离

1.前端代码 新建一个前端文件夹,在该文件夹下新建一个.html文件,写入自己的html代码。 前端搞定。 2.后端代码 其核心是挂载路由接受前端传来的数据核心代码如下: func main() { // 服务运行提示 fmt.Println("go web server is runn…

JetsonNano —— 4、Windows下对JetsonNano板卡烧录刷机Ubuntu20.04版本(官方教程)

介绍 NVIDIA Jetson Nano™ 开发者套件是一款面向创客、学习者和开发人员的小型 AI 计算机。按照这个简短的指南,你就可以开始构建实用的 AI 应用程序、酷炫的 AI 机器人等了。 烧录刷机 1、下载 Jetson Nano开发者套件SD卡映像 解压出.img文件并记下它在计算机上的…

文件I/O--C++的文件操作

一、打开文件&#xff0c;从文件中读取、写入文件 从文件中读取数据&#xff1a; #include<fstream> //fstream File stream:文件流 #include<iostream> //fstream包含了 iostream&#xff0c;所以这句可以省略&#xff0c;现在不能了 using namespace std;i…

C语言贪吃蛇实现

When the night gets dark,remember that the Sun is also a star. 当夜幕降临时&#xff0c;请记住太阳也是一颗星星。 ————《去月球海滩篇》 目录 文章目录 一、《贪吃蛇》游戏介绍 二、WIN32部分接口简单介绍 2.1 控制台窗口大小设置 2.2 命令行窗口的名称的变更 2…

基于vue.js开发的家庭装修管理系统开发与设计(源码+lw+部署文档+讲解),源码可白嫖!

摘要 本家庭装修管理系统采用B/S架构&#xff0c;数据库是MySQL&#xff0c;网站的搭建与开发采用了先进的Node.js语言进行编写&#xff0c;使用了VUE框架。该系统从两个对象&#xff1a;由管理员和用户来对系统进行设计构建。用户的功能包括&#xff1a;注册、登录、浏览首页…

OpenCV图像拼接(5)图像拼接模块的用于创建权重图函数createWeightMap()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 cv::detail::createWeightMap 是 OpenCV 库中用于图像拼接模块的一个函数&#xff0c;主要用于创建权重图。这个权重图在图像拼接过程中扮演着重…

LangGraph 怎么控制递归次数

这一节我们讲讲langgraph图的递归限制 Recursion Limit&#xff0c;递归限制设置了图在单次执行过程中可以执行的最大超级步骤数。一旦达到该限制&#xff0c;LangGraph 将引发 GraphRecursionError 错误。默认情况下&#xff0c;此值设置为 25 步。递归限制可以在运行时为任何…

Milvus WeightedRanker 对比 RRF 重排机制

省流:优先选择WeightedRanker 以rag为例,优先选择bm25全文检索,其次选择向量检索 Milvus混合搜索中的重排机制 Milvus通过hybrid_search() API启用混合搜索功能&#xff0c;结合复杂的重排策略来优化多个AnnSearchRequest实例的搜索结果。本主题涵盖了重排过程&#xff0c;…

在K8S中使用ArgoCD做持续部署

一、了解argocd ArgoCD是一个基于Kubernetes的GitOps持续交付工具&#xff0c;应用的部署和更新都可以在Git仓库上同步实现&#xff0c;并自带一个可视化界面。本文介绍如何使用GitArgocd方式来实现在k8s中部署和更新应用服务。关于ci这一块这里不多介绍。主要讲解argocd如何实…

可视化图解算法:删除有序(排序)链表中重复的元素

1. 题目 描述 删除给出链表中的重复元素&#xff08;链表中元素从小到大有序&#xff09;&#xff0c;使链表中的所有元素都只出现一次 例如&#xff1a; 给出的链表为1→1→2,返回1→2. 给出的链表为1→1→2→3→3返回1→2→3. 数据范围&#xff1a;链表长度满足 0≤n≤100…

ETL:数据清洗、规范化和聚合的重要性

在当今这个数据呈爆炸式增长的时代&#xff0c;数据已成为企业最为宝贵的资产之一。然而&#xff0c;数据的海量增长也伴随着诸多问题&#xff0c;如数据来源多样、结构复杂以及质量问题等&#xff0c;这些问题严重阻碍了数据的有效处理与深度分析。在此背景下&#xff0c;ETL&…

spring boot jwt生成token

1、引入jwt依赖 <!--jwt的依赖--> <dependency><groupId>com.auth0</groupId><artifactId>java-jwt</artifactId><version>3.18.3</version> </dependency> 2、创建TokenUtils工具类 package com.pn.utils;import com.…

豪越科技:融合低空经济的消防一体化安全管控解决方案

在科技飞速发展的当下&#xff0c;2025 年低空经济正处于规模化商用的关键节点&#xff0c;其在应急救援、物流配送等多领域展现出巨大潜力。豪越科技凭借其先进的消防一体化安全管控方案&#xff0c;与低空经济深度融合&#xff0c;打造出一套更为高效、智能的消防解决方案&am…

清华大学 | DeepSeek第十版!《DeepSeek政务应用场景及解决方案》

清华大学发布的《DeepSeek政务应用场景及解决方案》研究报告&#xff0c;聚焦人工智能技术DeepSeek在政府治理与公共服务中的创新实践&#xff0c;系统阐述了其如何通过智能化技术赋能政务数字化转型&#xff0c;推动治理能力现代化。报告指出&#xff0c;DeepSeek作为融合大数…

R语言双Y轴折线图+相关性注释

目录 包和数据 作图代码及详解 包和数据 rm(list ls()) library(ggpubr) library(scales) library(ggplot2)data <- iris##鸢尾花数据集 data1 <- data[1:30,c(1,2,3)] > head(data1)Sepal.Length Sepal.Width Petal.Length 1 5.1 3.5 …

2024年3月全国计算机等级考试真题(二级C语言)

&#x1f600; 第1题 下列叙述中正确的是 A. 矩阵是非线性结构 B. 数组是长度固定的线性表 C. 对线性表只能作插入与删除运算 D. 线性表中各元素的数据类型可以不同 题目解析&#xff1a; A. 矩阵是非线性结构 错误。矩阵通常是二维数组&#xff0c;属…

基于Ebay拍卖网站成交价格的影响因素分析

摘要:近些年来网上拍卖的不断地发展&#xff0c;网上购物慢慢变成了大家普遍接受的购物方式。因此关于网上拍卖的研究日益成为很多人研究的重点。 影响拍卖网站价格的因素很多&#xff0c;但很少有人分得清楚哪些因素才是比较重要的因素&#xff0c;因此对价格因素分析&#x…

Langchain中的表格解析:RAG 和表格的爱恨情仇

实现 RAG(Retrieval-Augmented Generation)是一个挑战,尤其是在有效解析和理解非结构化文档中的表格时。这在处理扫描文档或图像格式的文档时尤为困难。这些挑战至少包括以下三个方面: 1.表格的“叛逆期”:不准确的解析可能会破坏表格结构: 表格在文档里就像个叛逆的青少…

Solr-搜索引擎-入门到精通

以下是对 Apache Solr 的简介及其常用语法的快速入门指南&#xff1a; 一、Solr 是什么&#xff1f; • 核心定位&#xff1a;Apache Solr 是一个基于 Lucene 的高性能、开源的搜索平台&#xff0c;支持全文检索、分词、高亮、聚合统计等功能。 • 核心功能&#xff1a; • 全…

原生后台GPS位置限制,降低功耗

1.后台 GPS 位置限制的背景 为了控制功耗&#xff0c;Android 平台对后台应用获取位置信息的频率进行了限制。后台的定义与后台执行限制一致&#xff0c;即应用不在前台运行时被视为后台应用。 2.更新间隔限制&#xff1a; 后台应用获取位置信息的更新间隔不能超过一定阈值。…