八里庄网站建设公司/seo是如何做优化的

八里庄网站建设公司,seo是如何做优化的,wordpress 默认html5,小程序制作联系方式怎么添加以下是针对双RTX 3060显卡(12GB显存)在Ubuntu 22.04系统部署DeepSeek-R1-32b-qwen-distill-q8模型的完整流程,结合最新技术规范与魔塔社区资源: 一、驱动与CUDA环境配置 1. 禁用开源驱动 bash sudo tee /etc/modprobe.d/blackli…

以下是针对双RTX 3060显卡(12GB显存)在Ubuntu 22.04系统部署DeepSeek-R1-32b-qwen-distill-q8模型的完整流程,结合最新技术规范与魔塔社区资源:


一、驱动与CUDA环境配置

1. 禁用开源驱动
 

bash

sudo tee /etc/modprobe.d/blacklist-nouveau.conf <<< "blacklist nouveau
options nouveau modeset=0"
sudo update-initramfs -u && sudo reboot  # 参考网页2的驱动管理方法
2. 安装NVIDIA驱动570.57(适配CUDA 12.8)
 

bash

wget https://us.download.nvidia.com/XFree86/Linux-x86_64/570.57/NVIDIA-Linux-x86_64-570.57.run
sudo chmod +x NVIDIA-Linux-x86_64-570.57.run
sudo ./NVIDIA-Linux-x86_64-570.57.run --silent --no-opengl-files
sudo reboot

验证驱动:nvidia-smi应显示驱动版本570.57且双卡在线

3. 安装CUDA 12.8
bash
wget https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_555.51_linux.run
sudo sh cuda_12.8.0_555.51_linux.run  # 取消勾选Driver选项
bash
echo 'export PATH=/usr/local/cuda-12.8/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-12.8/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc

二、Python环境与PyTorch安装

1. 安装Python 3.10
bash
sudo apt update && sudo apt install python3.10 python3.10-venv
python3.10 -m venv ~/deepseek-env
source ~/deepseek-env/bin/activate
2. 安装PyTorch 2.3.1(适配CUDA 12.8)(这里使用了官方nightly编译版本,方法到官网复制)
bash
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128

版本对应关系:CUDA 12.8 + 驱动570.57 → PyTorch 2.3.1+cu121

2

3


三、llama.cpp服务端部署

1. 获取源码(不使用git clone)

bash

wget https://github.com/ggerganov/llama.cpp/archive/refs/tags/b3117.tar.gz
tar -zxvf llama.cpp.tar.gz && cd llama.cpp-b3117
2. CMake编译双显卡优化版本

bash

mkdir build && cd build
cmake .. -DLLAMA_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=86 -DLLAMA_NVCC_FLAGS="--use_fast_math" -DLLAMA_AVX2=ON
cmake --build . --config Release -j $(nproc)  # 参考网页3的编译优化思路

关键参数说明:

  • -DLLAMA_CUDA=ON:替代已弃用的CUBLAS参数
  • -DCMAKE_CUDA_ARCHITECTURES=86:适配RTX 3060的Ampere架构
  • -DLLAMA_NVCC_FLAGS:启用快速数学优化

四、模型下载与部署

1. 魔塔社区下载地址
魔搭社区

bash

wget https://www.modelscope.cn/models/unsloth/DeepSeek-R1-Distill-Qwen-32B-GGUF/resolve/master/DeepSeek-R1-Distill-Qwen-32B-Q8_0.gguf

注:需登录魔塔社区

1

3

2. 模型存放

bash

mkdir -p ~/models && mv deepseek-r1-32b-qwen-distill.Q8_0.gguf ~/models/

五、双显卡API服务配置

1. 启动命令

bash

./server -m ~/models/deepseek-r1-32b-qwen-distill.Q8_0.gguf \--host 0.0.0.0 --port 11434 \--n-gpu-layers 99 \             # 全量GPU计算层--tensor-split 11,11 \          # 显存分配(每卡11GB)--parallel 2 \                  # 双卡张量并行--main-gpu 0 \                  # 主卡ID--ctx-size 4096 \--mlock \--flash-attn \--batch-size 512
2. 性能优化技巧
  • 显存分配:根据网页3建议,实际可用显存=总显存-2GB系统保留
  • PCIe带宽优化sudo nvidia-smi -i 0,1 -pm 1保持高性能模式

    2

  • 冷启动加速:添加--preload参数预加载模型至显存

    1


六、服务验证

bash

# GPU利用率监控
nvidia-smi --query-gpu=utilization.gpu,memory.used --format=csv -l 2# API压力测试
curl http://localhost:11434/v1/completions \-H "Content-Type: application/json" \-d '{"prompt": "如何优化双显卡的深度学习推理性能?", "max_tokens": 500}'

版本兼容性矩阵

组件版本适配说明
NVIDIA驱动570.57CUDA 12.8最低要求
CUDA12.8.0需驱动≥570
PyTorch2.3.1+cu121通过cu121后缀兼容
llama.cppb3117支持张量并行

常见问题处理

  1. 显存不足:降低--tensor-split值(如10,10),或减少--ctx-size至2048
  2. 模型加载失败:使用md5sum校验模型文件,魔塔社区提供完整校验码
  3. 多卡未启用:检查PCIe连接状态,建议使用PCIe 4.0 x16插

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/898289.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HTML5扫雷游戏开发实战

HTML5扫雷游戏开发实战 这里写目录标题 HTML5扫雷游戏开发实战项目介绍技术栈项目架构1. 游戏界面设计2. 核心类设计 核心功能实现1. 游戏初始化2. 地雷布置算法3. 数字计算逻辑4. 扫雷功能实现 性能优化1. DOM操作优化2. 算法优化 项目亮点技术难点突破1. 首次点击保护2. 连锁…

Qt之自定义界面组件 一

通过qt中的painter绘图事件绘制一个电池电量图的变化。效果如下图 创建一个基于界面widget工程&#xff0c;在wdiget界面添加一个widget界面,将添加的widget界面的类提升为Tbattery.在Tbattery类中重写painEvent电池电量代码 文件目录结构 主要部分代码 //Tbattery.cpp #inc…

LeRobot源码剖析——对机器人各个动作策略的统一封装:包含ALOHA ACT、Diffusion Policy、VLA模型π0

前言 过去2年多的深入超过此前7年&#xff0c;全靠夜以继日的勤奋&#xff0c;一天当两天用&#xff0c;抠论文 抠代码 和大模型及具身同事讨论&#xff0c;是目前日常 而具身库里&#xff0c;idp3、π0、lerobot值得反复研究&#xff0c;故&#xff0c;近期我一直在抠π0及l…

数据结构篇——线索二叉树

一、引入 遍历二叉树是按一定规则将二叉树结点排成线性序列&#xff0c;得到先序、中序或后序序列&#xff0c;本质是对非线性结构线性化&#xff0c;使结点&#xff08;除首尾&#xff09;在线性序列中有唯一前驱和后继&#xff1b;但以二叉链表作存储结构时&#xff0c;只能获…

汽车保养记录用什么软件记录,汽车维修记录查询系统,佳易王汽车保养维护服务记录查询管理系统操作教程

一、概述 本实例以佳易王汽车保养维护服务记录查询管理系统为例说明&#xff0c;其他版本可参考本实例。试用版软件资源可到文章最后了解&#xff0c;下载的文件为压缩包文件&#xff0c;请使用免费版的解压工具解压即可试用。 软件特点&#xff1a;1、功能实用&#xff0c;操…

Python IP解析器 ip2region使用

说明&#xff1a;最近需要在python项目内使用IP定位所在城市的需求&#xff0c;没有采用向外部ISP服务商API请求获取信息的方案&#xff0c;则翻了翻&#xff0c;在搞Java时很多的方案&#xff0c;在Python端反而可选择范围很小。 # 示例查询 ips ["106.38.188.214"…

python开发订单查询功能(flask+orm bee)

1. 搭建python环境。 可以参考其它文档。 此处python使用 3.12 IDE随意&#xff0c;PyCharm 或 Eclipse PyDev也可以。 2. Flask 2.1 安装Flask pip install Flask 2.2 一个最简单的flask实例 创建一个工程&#xff0c; 新建一个 main.py文件&#xff0c; 输入以下内容…

哈尔滨服务器租用托管流程

哈尔滨服务器租用托管流程可分为三个阶段实施&#xff0c;具体操作如下&#xff1a; 一、前期准备阶段 业务需求评估 明确计算资源需求&#xff1a;CPU核心数/线程数、内存容量、存储类型(HDD/SSD/NVMe)及容量、带宽标准(独享/共享) 确定网络架构要求&#xff1a;多线接入、国际…

音频大语言模型可作为描述性语音质量评价器

论文《AUDIO LARGE LANGUAGE MODELS CAN BE DESCRIPTIVE SPEECH QUALITY EVALUATORS》学习 推动多模态代理从"能听"到"懂好坏"的进化 摘要&#xff1a; . 研究背景与问题 核心内容&#xff1a;现有音频大语言模型缺乏对输入语音质量的感知能力&#xff…

我在哪,要去哪

在直播间听到一首好听的歌《我在哪&#xff0c;要去哪》-汤倩。 遇见的事&#xff1a;21~24号抽调去招生。 感受到的情绪&#xff1a;公假吗&#xff1f;给工作量吗&#xff1f;月工作量不够扣钱吗&#xff1f;报销方便吗&#xff1f;有事情&#xff0c;从来不解决后顾&#x…

某快餐店用户市场数据挖掘与可视化

1、必要库的载入 import pandas as pd import matplotlib.pyplot as plt import seaborn as sns2、加载并清洗数据 # 2.1 加载数据 df pd.read_csv(/home/mw/input/survey6263/mcdonalds.csv)# 2.2 数据清洗 # 2.2.1 检查缺失值 print(缺失值情况&#xff1a;) print(df.isn…

Easysearch 索引生命周期管理实战

如果你的使用场景是对时序型数据进行分析&#xff0c;可能你会更重视最新的数据&#xff0c;并且可能会定期对老旧的数据进行一些处理&#xff0c;比如减少副本数、forcemerge、 删除等。Easysearch 的索引生命周期管理功能&#xff0c;可以自动完成此类索引的管理任务。 创建…

Modbus通信协议基础知识总结

1. 数据类型与存储区分类 Modbus协议将数据分为四类存储区&#xff0c;通过存储区代号区分&#xff1a; 输出线圈&#xff08;0x&#xff09;&#xff1a;可读写&#xff0c;对应二进制开关量&#xff08;如继电器状态&#xff09;&#xff0c;地址范围000001-065536&#xff…

LeetCode 2614.对角线上的质数:遍历(质数判断)

【LetMeFly】2614.对角线上的质数&#xff1a;遍历(质数判断) 力扣题目链接&#xff1a;https://leetcode.cn/problems/prime-in-diagonal/ 给你一个下标从 0 开始的二维整数数组 nums 。 返回位于 nums 至少一条 对角线 上的最大 质数 。如果任一对角线上均不存在质数&…

linux 安全 xshell 使用

目录和文件 ls -l 查看目录和文件的权限的设置情况 加固方法 对于重要目录&#xff0c;建议执行如下类似操作 Chmod -R 750 /etc/rc.d/init.d/* 这样只有root可以读写和执行这个目录下的脚本 新建了一个用户Q 写入了一些信息 发现在root用户下可以进行文件打开 接下来用普通用…

自动驾驶背后的数学:特征提取中的线性变换与非线性激活

在上一篇博客「自动驾驶背后的数学&#xff1a;从传感器数据到控制指令的函数嵌套」—— 揭秘人工智能中的线性函数、ReLU 与复合函数中&#xff0c;我们初步探讨了自动驾驶技术中从传感器数据到控制指令的函数嵌套流程&#xff0c;其中提到了特征提取模块对传感器数据进行线性…

杨校老师课堂之编程入门与软件安装【图文笔记】

亲爱的同学们&#xff0c;热烈欢迎踏入青少年编程的奇妙世界&#xff01; 我是你们的授课老师杨校 &#xff0c;期待与大家一同开启编程之旅。 1. 轻松叩开编程之门 1.1 程序的定义及生活中的应用 程序是人与计算机沟通的工具。在日常生活中&#xff0c;像手机里的各类 APP、电…

DeepSeek 3FS 与 JuiceFS:架构与特性比较

近期&#xff0c;DeepSeek 开源了其文件系统 Fire-Flyer File System (3FS)&#xff0c;使得文件系统这一有着 70 多年历时的“古老”的技术&#xff0c;又获得了各方的关注。在 AI 业务中&#xff0c;企业需要处理大量的文本、图像、视频等非结构化数据&#xff0c;还需要应对…

Coco AI 智能检索 Hugo Blog 集成指南

在此前的文章中&#xff0c;我们介绍了如何使用 Coco Server 连接 Notion&#xff0c;实现智能内容检索。本次&#xff0c;我们将进一步探索如何在 Coco Server 最新版本 中集成 Hugo Site&#xff0c;以便对 Hugo 站点 进行高效检索。 Coco Server 部署方式 要在本地或服务器…

Mobile-Agent-V:通过视频引导的多智体协作学习移动设备操作

25年2月来自北京交大和阿里巴巴公司的论文“Mobile-Agent-V: Learning Mobile Device Operation Through Video-Guided Multi-Agent Collaboration”。 移动设备使用量的快速增长&#xff0c;迫切需要改进自动化以实现无缝任务管理。然而&#xff0c;因缺乏操作知识&#xff0…