深圳有哪些公司的总部/保定seo排名外包

深圳有哪些公司的总部,保定seo排名外包,营销型网站的分类,汕头第一网e京网一、什么是贪心算法? 贪心算法(Greedy Algorithm)是一种简单而高效的算法设计思想,其核心思想是:在每一步选择中,都采取当前状态下最优的选择(即“局部最优解”),希望通…

一、什么是贪心算法?

贪心算法(Greedy Algorithm)是一种简单而高效的算法设计思想,其核心思想是:在每一步选择中,都采取当前状态下最优的选择(即“局部最优解”),希望通过一系列局部最优解最终达到全局最优解。虽然贪心算法并不总是能得到全局最优解,但在许多问题中,它能够快速找到近似最优解。

1. 贪心算法的优缺点

优点

  • 高效性:通常时间复杂度较低,适合解决大规模问题。
  • 简单性:实现简单,易于理解和应用。
  • 实用性:在许多实际问题中(如调度、路径规划等),贪心算法能快速找到近似最优解。

缺点

  • 局限性:贪心算法并不总是能得到全局最优解。
  • 适用范围有限:需要满足贪心选择性质和最优子结构性质。

2. 贪心算法的适用场景

贪心算法适用于满足以下条件的问题:

  • 贪心选择性质:可以通过局部最优选择逐步构造全局最优解。
  • 最优子结构:问题的最优解可以通过子问题的最优解构造。
  • 如果不满足上述条件,贪心算法可能无法得到正确结果。例如,在某些情况下,动态规划可能是更好的选择。

二、贪心算法经典问题与解法

1. 贪心算法的核心思想

贪心算法的特点可以总结为以下几点:
(1)局部最优选择
在每一步决策时,选择当前看起来最优的选项。
不考虑未来的后果,也不回溯之前的决策。
(2)无后效性
一旦做出某个选择,就不会再改变。
每一步的决策只依赖于当前状态,而不依赖于之前的状态。
(3)贪心选择性质
全局最优解可以通过一系列局部最优选择来构造。
(4)最优子结构性质
问题的最优解包含其子问题的最优解。

2. 经典贪心算法示例

2.1 活动选择问题

问题描述:
给定一组活动,每个活动有开始时间和结束时间,要求选择尽可能多的互不冲突的活动。
算法描述:
按活动的结束时间排序。
每次选择最早结束的活动,并排除与之冲突的活动。
代码实现:

def activity_selection(start, finish):# 按结束时间排序activities = sorted(zip(start, finish), key=lambda x: x[1])selected = []last_finish_time = -1for start_time, finish_time in activities:if start_time >= last_finish_time:  # 如果活动不冲突selected.append((start_time, finish_time))last_finish_time = finish_timereturn selected# 调用函数
start_times = [1, 3, 0, 5, 8, 5]
finish_times = [2, 4, 6, 7, 9, 9]
print("Selected activities:", activity_selection(start_times, finish_times))

2.2 分数背包问题(Fractional Knapsack Problem)

问题描述:
给定一组物品,每个物品有重量和价值,要求在不超过背包容量的情况下,最大化总价值。允许将物品分割。
算法描述:
计算每个物品的单位价值(价值/重量)。
按单位价值从高到低排序。
尽量装入单位价值最高的物品,直到背包装满。
代码实现:

def fractional_knapsack(weights, values, capacity):# 计算单位价值并排序items = sorted([(v / w, w, v) for v, w in zip(values, weights)],key=lambda x: x[0],reverse=True)total_value = 0for value_per_weight, weight, value in items:if capacity >= weight:total_value += valuecapacity -= weightelse:total_value += value_per_weight * capacitybreakreturn total_value# 调用函数
weights = [10, 20, 30]
values = [60, 100, 120]
capacity = 50
print("Maximum value:", fractional_knapsack(weights, values, capacity))

3. 贪心算法刷力扣题

3.1 无重叠区间(LeetCode原题435题)

问题描述
给定一个区间的集合 intervals,其中 intervals[i] = [start_i, end_i],返回需要移除的最小区间数量,使得剩余区间互不重叠。
解题思路:
按区间的结束时间排序。
每次选择最早结束的区间,并移除与之重叠的区间。
代码实现:

def eraseOverlapIntervals(intervals):if not intervals:return 0intervals.sort(key=lambda x: x[1])  # 按结束时间排序count = 0end = intervals[0][1]for i in range(1, len(intervals)):if intervals[i][0] < end:  # 当前区间与前一个区间重叠count += 1else:end = intervals[i][1]  # 更新结束时间return count
# 调用函数
intervals = [[1, 2], [2, 3], [3, 4], [1, 3]]
print(eraseOverlapIntervals(intervals))  
# 输出: 1

3.2 跳跃游戏(LeetCode 原题55题)

问题描述:
给定一个非负整数数组 nums,你最初位于数组的第一个位置。数组中的每个元素代表你在该位置可以跳跃的最大长度。判断你是否能够到达最后一个位置。
解题思路:
维护一个变量 max_reach 表示当前能到达的最远位置。
遍历数组时,更新 max_reach,如果当前位置超过了 max_reach,则无法到达终点。
代码实现:

def canJump(nums):max_reach = 0for i, jump in enumerate(nums):if i > max_reach:  # 当前位置不可达return Falsemax_reach = max(max_reach, i + jump)return max_reach >= len(nums) - 1# 调用函数
nums = [2, 3, 1, 1, 4]
print(canJump(nums))  
# 输出: True

4. 优化方法

4.1 数据预处理

(1)排序
贪心算法通常依赖于某种顺序(如活动的结束时间、物品的单位价值等),因此对数据进行适当的排序是关键。
使用高效的排序算法(如快速排序或归并排序)可以减少预处理的时间开销。
(2)去重或过滤
在某些情况下,可以通过去重或过滤无效数据来减少计算量。

4.2 使用优先队列优化选择过程

当需要动态选择当前最优元素时,可以使用优先队列(如最小堆或最大堆)来加速选择过程。

4.3 并行化与分布式计算

对于独立的子问题,可以使用多线程或多进程并行处理。

4.4 近似算法优化

(1)放松约束条件
在某些情况下,可以通过放松约束条件来简化问题,从而使贪心算法更高效。
例如,在分数背包问题中,允许分割物品可以显著简化问题。
(2)局部搜索优化
在贪心算法的基础上,可以通过局部搜索(如交换相邻元素)进一步优化结果。
示例:任务调度问题
使用贪心算法生成初始调度方案后,通过交换任务顺序来减少总完成时间。

三、总结

贪心算法,名思义,总是做出当前的最优选择,即期望通过局部的最优选择获得整体的最优选择。
某种意义上说,贪心算法是很贪婪、很目光短浅的,它不从整体考虑,仅仅只关注当前的最大利益,所以说它做出的选择仅仅是某种意义上的局部最优,但是贪心算法在很多问题上还是能够拿到最优解或较优解。

1. 注意事项

(1)适用条件:问题需满足贪心选择性质(局部最优可推导全局最优)和最优子结构。例如,分数背包满足贪心性质,而0-1背包不满足。
(2)验证必要性:贪心策略的正确性需通过数学归纳法或反证法严格证明。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/896029.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

竞争与冒险问题【数电速通】

时序逻辑电路&#xff1a; 组合逻辑电路中的竞争与冒险问题&#xff1a; 在组合逻辑电路中&#xff0c;竞争和冒险是两种常见的时序问题&#xff0c;它们通常由电路的延时特性和不完美的设计引起。下面是这两种现象的详细解释&#xff1a; 1. 竞争&#xff08;Race Condition&…

Microsoft 365 Copilot中使用人数最多的是哪些应用

今天在浏览Microsoft 365 admin center时发现&#xff0c;copilot会自动整理过去30天内所有用户使用copilot的概况&#xff1a; 直接把这个图丢给copilot让它去分析&#xff0c;结果如下&#xff1a; 总用户情况 总用户数在各应用中均为 561 人&#xff0c;说明此次统计的样本…

ue5.2.1 quixel brideg显示asset not available in uAsset format

我从未见过如此傻x的bug&#xff0c;在ue5.2.1上通过内置quixel下载资源显示 asset not available in uAsset format 解决办法&#xff1a;将ue更新到最新版本&#xff0c;通过fab进入商场选择资源后add to my library 点击view in launcher打开epic launcher&#xff0c;就可…

Spring面试题2

1、compareable和compactor区别 定义与包位置:Comparable是一个接口&#xff0c;位于java.lang包,需要类去实现接口&#xff1b;而Compactor是一个外部比较器&#xff0c;位于java.util包 用法&#xff1a;Comparable只需要实现int compareTo(T o) 方法&#xff0c;比较当前对…

JUC并发—9.并发安全集合四

大纲 1.并发安全的数组列表CopyOnWriteArrayList 2.并发安全的链表队列ConcurrentLinkedQueue 3.并发编程中的阻塞队列概述 4.JUC的各种阻塞队列介绍 5.LinkedBlockingQueue的具体实现原理 6.基于两个队列实现的集群同步机制 4.JUC的各种阻塞队列介绍 (1)基于数组的阻塞…

vue项目启动时报错:error:0308010C:digital envelope routines::unsupported

此错误与 Node.js 的加密模块有关&#xff0c;特别是在使用 OpenSSL 3.0 及以上版本时。Vue 项目在启动时可能会依赖一些旧的加密算法&#xff0c;而这些算法在 OpenSSL 3.0 中默认被禁用&#xff0c;导致 error:0308010C:digital envelope routines::unsupported 错误。 解决…

ncDLRES:一种基于动态LSTM和ResNet的非编码RNA家族预测新方法

现有的计算方法主要分为两类&#xff1a;第一类是通过学习序列或二级结构的特征来预测ncRNAs家族&#xff0c;另一类是通过同源序列之间的比对来预测ncRNAs家族。在第一类中&#xff0c;一些方法通过学习预测的二级结构特征来预测ncRNAs家族。二级结构预测的不准确性可能会导致…

爱普生 SG-8101CE 可编程晶振在笔记本电脑的应用

在笔记本电脑的精密架构中&#xff0c;每一个微小的元件都如同精密仪器中的齿轮&#xff0c;虽小却对整体性能起着关键作用。如今的笔记本电脑早已不再局限于简单的办公用途&#xff0c;其功能愈发丰富多样。从日常轻松的文字处理、网页浏览&#xff0c;到专业领域中对图形处理…

SPRING10_getBean源码详细解读、流程图

文章目录 ①. getBean方法的入口-DefaultListableBeanFactory②. DefaultListableBeanFactory调用getBean③. 进入到doGetBean方法④. getSingleton三级缓存方法⑤. getSingleton()方法分析⑥. createBean创建对象方法⑦. 对象创建、属性赋值、初始化⑧. getBean最详细流程图 ①…

IDEA中查询Maven项目的依赖树

在Maven项目中&#xff0c;查看项目的依赖树是一个常见的需求&#xff0c;特别是当你需要了解项目中直接或间接依赖了哪些库及其版本时。你可以通过命令行使用Maven的dependency:tree插件来做到这一点。这个命令会列出项目中所有依赖的树状结构。 打开idea项目的终端&#xff…

windows 安装 stable diffusion

在windows上安装 stable diffusion&#xff0c;如果windows没有nvidia显卡&#xff0c;想只使用CPU可在webui-user.bat中添加命令 set COMMANDLINE_ARGS--no-half --skip-torch-cuda-test 可正常使用stable diffusion&#xff0c;但速度较慢

DeepSeek 助力 Vue 开发:打造丝滑的缩略图列表(Thumbnail List)

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 Deep…

DeepSeek写俄罗斯方块手机小游戏

DeepSeek写俄罗斯方块手机小游戏 提问 根据提的要求&#xff0c;让DeepSeek整理的需求&#xff0c;进行提问&#xff0c;内容如下&#xff1a; 请生成一个包含以下功能的可运行移动端俄罗斯方块H5文件&#xff1a; 核心功能要求 原生JavaScript实现&#xff0c;适配手机屏幕 …

百问网(100ask)的IMX6ULL开发板的以太网控制器(MAC)与物理层(PHY)芯片(LAN8720A)连接的原理图分析(包含各引脚说明以及工作原理)

前言 本博文承接博文 https://blog.csdn.net/wenhao_ir/article/details/145663029 。 本博文和博文 https://blog.csdn.net/wenhao_ir/article/details/145663029 的目录是找出百问网(100ask)的IMX6ULL开发板与NXP官方提供的公板MCIMX6ULL-EVK(imx6ull14x14evk)在以太网硬件…

QT开发技术 【opencv图片裁剪,平均哈希相似度判断,以及获取游戏窗口图片】

一、图片裁剪 int CJSAutoWidget::GetHouseNo(cv::Mat matMap) {cv::imwrite(m_strPath "/Data/map.png", matMap);for (int i 0; i < 4; i){for (int j 0; j < 6; j){// 计算当前子区域的矩形cv::Rect roi(j * 20, i * 17, 20, 17);// 提取子区域cv::Mat …

TiDB 是一个分布式 NewSQL 数据库

TiDB 是一个分布式 NewSQL 数据库。它支持水平弹性扩展、ACID 事务、标准 SQL、MySQL 语法和 MySQL 协议&#xff0c;具有数据强一致的高可用特性&#xff0c;是一个不仅适合 OLTP 场景还适合 OLAP 场景的混合数据库。 TiDB是 PingCAP公司自主设计、研发的开源分布式关系型数据…

mysql 学习15 SQL优化,插入数据优化,主键优化,order by优化,group by 优化,limit 优化,count 优化,update 优化

插入数据优化&#xff0c; insert 优化&#xff0c; 批量插入&#xff08;一次不超过1000条&#xff09; 手动提交事务 主键顺序插入 load 从本地一次插入大批量数据&#xff0c; 登陆时 mysql --local-infile -u root -p load data local infile /root/sql1.log into table tb…

使用JWT实现微服务鉴权

目录 一、微服务鉴权 1、思路分析 2、系统微服务签发token 3、网关过滤器验证token 4、测试鉴权功能 前言&#xff1a; 随着微服务架构的广泛应用&#xff0c;服务间的鉴权与安全通信成为系统设计的核心挑战之一。传统的集中式会话管理在分布式场景下面临性能瓶颈和扩展性…

广西壮族自治区园区投促中心党委书记陶德文率团到访深兰科技

2月16日&#xff0c;广西壮族自治区园区投促中心党委书记、主任&#xff0c;自治区园区办党组成员陶德文率团来到深兰科技集团上海总部考察调研&#xff0c;并与深兰科技集团创始人、董事长陈海波等集团管理层座谈交流&#xff0c;双方围绕深兰科技人工智能项目落地广西的相关事…