聊城集团网站建设报价/网站怎么做出来的

聊城集团网站建设报价,网站怎么做出来的,wordpress smzdm主题,浏览器大全网址目录 效果图操作步骤软件版本halcon参考代码本地函数 get_distinct_colors()本地函数 make_neighboring_colors_distinguishable() 效果图 操作步骤 首先要在Deep Learning Tool工具里面把图片打上标注文本, 然后训练模型,导出模型文件 这个是模型 mod…

目录

    • 效果图
    • 操作步骤
    • 软件版本
    • halcon参考代码
    • 本地函数 get_distinct_colors()
    • 本地函数 make_neighboring_colors_distinguishable()

效果图

在这里插入图片描述
在这里插入图片描述

操作步骤

首先要在Deep Learning Tool工具里面把图片打上标注文本,
然后训练模型,导出模型文件

这个是模型
model_训练-250215-111516_opt.hdl

模型配置参数
model_训练-250215-111516_opt_dl_preprocess_params.hdict

软件版本

  • 使用的版本 halcon 23.11
  • Deep Learning Tool-24.05.1

halcon参考代码

 
* 
* Inference can be done on a GPU or CPU.
* See the respective system requirements in the Installation Guide.
* If possible a GPU is used in this example.
* In case you explicitly wish to run this example on the CPU,
* choose the CPU device instead.
query_available_dl_devices (['runtime', 'runtime'], ['gpu', 'cpu'], DLDeviceHandles)
if (|DLDeviceHandles| == 0)throw ('No supported device found to continue this example.')
endif
* Due to the filter used in query_available_dl_devices, the first device is a GPU, if available.
*第一个设备是 GPU(如果可用)
DLDevice := DLDeviceHandles[0]
* * *************************************************
* **   设置推理路径和参数   ***
* *************************************************
* 
* 我们将对示例图像进行推理。
* 在实际应用程序中,新传入的图像(不用于训练或评估)
* 将在此处使用。
* 
* 在此示例中,我们从 file 中读取图像。* 用我训练的图片
ImageDir :=  'G:/机器视觉_测试项目/家具目标检测/images - 副本'* 
* Set the paths of the retrained model and the corresponding preprocessing parameters.
* Example data folder containing the outputs of the previous example series.
ExampleDataDir := 'detect_pills_data'* Use the pretrained model and preprocessing parameters shipping with HALCON.*使用 HALCON 附带的预训练模型和预处理参数。*PreprocessParamFileName := 'detect_pills_preprocess_param.hdict'* RetrainedModelFileName := 'detect_pills.hdl'*whl 测试我自己训练的模型和参数,图片配置dir1223:='G:/机器视觉_测试项目/家具目标检测/'imgConfigHdict:='model_训练-250215-111516_opt_dl_preprocess_params.hdict'PreprocessParamFileName:= dir1223+imgConfigHdict*识别模型* RetrainedModelFileName := dir1223+ 'best_model.hdl'RetrainedModelFileName :=dir1223+ 'model_训练-250215-111516_opt.hdl'* 
* Batch Size used during inference.推理批次大小
BatchSizeInference := 1
* 
* Postprocessing parameters for the detection model.检测模型的后处理参数。
MinConfidence := 0.6
MaxOverlap := 0.2
MaxOverlapClassAgnostic := 0.7
* 
* ********************
* **   推理   ***
* ********************
* 
* Check if all necessary files exist.
*check_data_availability (ExampleDataDir, PreprocessParamFileName, RetrainedModelFileName, UsePretrainedModel)
* 
*  读取重新训练的模型。
read_dl_model (RetrainedModelFileName, DLModelHandle)
* 
* Set the batch size. 设置批处理大小。
set_dl_model_param (DLModelHandle, 'batch_size', BatchSizeInference)
* 
* Initialize the model for inference.初始化模型以进行推理。
set_dl_model_param (DLModelHandle, 'device', DLDevice)
* 
* Set postprocessing parameters for model.设置模型的后处理参数。
set_dl_model_param (DLModelHandle, 'min_confidence', MinConfidence)
set_dl_model_param (DLModelHandle, 'max_overlap', MaxOverlap)
set_dl_model_param (DLModelHandle, 'max_overlap_class_agnostic', MaxOverlapClassAgnostic)
* 
* Get the parameters used for preprocessing.获取用于预处理的参数。
read_dict (PreprocessParamFileName, [], [], DLPreprocessParam)
* * 使用显示所需的数据集参数创建字典。
DLDataInfo := dict{}
get_dl_model_param (DLModelHandle, 'class_names', ClassNames)* 目标对象,标签名称
DLDataInfo.class_names := ClassNames
get_dl_model_param (DLModelHandle, 'class_ids', ClassIDs)
DLDataInfo.class_ids := ClassIDs
* 设置可视化的通用参数。
GenParam := dict{scale_windows: 1.2,display_labels:true}*读取目录里面的若干图片文件list_files (ImageDir, ['files' ], ImageFiles)*获取图片尺寸,whl测试read_image(img1,ImageFiles[0])        get_image_size (img1, Width, Height)* dev_open_window (1, 1, Width, Height, 'black', WindowID1)dev_open_window (1, 1, 900, 900*Height/(Width*1.0), 'black', WindowID1)*视频文件读取*grab_image_from_video()* open_framegrabber()* 读取视频帧
*grab_image_start([])
*grab_image(Image)
*grab_image_stop([])* 
* 以 BatchSizeInference 大小批量循环访问所有图像以进行推理
for BatchIndex := 0 to floor(|ImageFiles| / real(BatchSizeInference)) - 1 by 1* * Get the paths to the images of the batch.Batch := ImageFiles[BatchIndex * BatchSizeInference:(BatchIndex + 1) * BatchSizeInference - 1]* 读取图片read_image (ImageBatch, Batch)* * Generate the DLSampleBatch.gen_dl_samples_from_images (ImageBatch, DLSampleBatch)* * Preprocess the DLSampleBatch.preprocess_dl_samples (DLSampleBatch, DLPreprocessParam)* * 在 DLSampleBatch 上应用 DL 模型。apply_dl_model (DLModelHandle, DLSampleBatch, [], DLResultBatch)* * Postprocessing and visualization.后处理和可视化* Loop over each sample in the batch.循环处理批次中的每个样品for SampleIndex := 0 to BatchSizeInference - 1 by 1* * Get sample and according results.获取样本和相应的结果。DLSample := DLSampleBatch[SampleIndex]DLResult := DLResultBatch[SampleIndex]* *whl测试
KeysForDisplay:='bbox_result'* * 显示检测结果.* dev_display_dl_data (DLSample, DLResult, DLDataInfo, 'bbox_result', GenParam, WindowHandleDict)*whl测试,ocr_detection_score_map_character* 
* This procedure displays the content of the provided DLSample and/or DLResult
* depending on the input string KeysForDisplay.
* DLDatasetInfo is a dictionary containing the information about the dataset.
* The visualization can be adapted with GenParam.
* 
* ** Set the default values: ***
Params := dict{}
* 
* Define the screen width when a new window row is started.
Params.threshold_width := 1024
* Since potentially a lot of windows are opened,
* scale the windows consistently.
Params.scale_windows := 0.8
* Set a font and a font size.
Params.font := 'mono'
Params.font_size := 14
* 
Params.line_width := 2
Params.map_transparency := 'cc'
Params.map_color_bar_width := 140
* 
* Define parameter values specifically for 3d_gripping_point_detection
Params.gripping_point_color := '#00FF0099'
Params.gripping_point_size := 6
Params.region_color := '#FF000040'
Params.gripping_point_map_color := '#83000080'
Params.gripping_point_background_color := '#00007F80'
* 
* Define parameter values specifically for anomaly detection
* and Global Context Anomaly Detection.
Params.anomaly_region_threshold := -1
Params.anomaly_classification_threshold := -1
Params.anomaly_region_label_color := '#40e0d0'
Params.anomaly_color_transparency := '40'
Params.anomaly_region_result_color := '#ff0000c0'
* 
* Define segmentation-specific parameter values.
Params.segmentation_max_weight := 0
Params.segmentation_draw := 'fill'
Params.segmentation_transparency := 'aa'
Params.segmentation_exclude_class_ids := []
* 
* Define bounding box-specific parameter values.
Params.bbox_label_color := '#000000' + '99'
Params.bbox_display_confidence := 1
Params.bbox_text_color := '#eeeeee'
* 
* By default, display a description on the bottom.
Params.display_bottom_desc := true
* 
* By default, show a legend with class IDs.
Params.display_legend := true
* 
* By default, show the anomaly ground truth regions.
Params.display_ground_truth_anomaly_regions := true
* 
* By default, show class IDs and color frames for classification ground truth/results.
Params.display_classification_ids := true
Params.display_classification_color_frame := true
* 
* By default, show class labels for detection ground truth/results.
Params.display_labels := true
* 
* By default, show direction of the ground truth/results instances for detection with instance_type 'rectangle2'.
Params.display_direction := true
* 
* By default, use color scheme 'Jet' for the heatmap display.
Params.heatmap_color_scheme := 'jet'
* ** Set user-defined values: ***
* 
* Overwrite default values by given generic parameters.
if (GenParam != [])get_dict_param (GenParam, 'keys', [], GenParamNames)for ParamIndex := 0 to |GenParamNames| - 1 by 1GenParamName := GenParamNames[ParamIndex]get_dict_param (Params, 'key_exists', GenParamName, KeyExists)if (not KeyExists)throw ('Unknown generic parameter: ' + GenParamName + '.')endifParams.[GenParamName] := GenParam.[GenParamName]endfor
endif
* 
if (|DLSample| > 1 or |DLResult| > 1)throw ('Only a single dictionary for DLSample and DLResult is allowed')
endif
* 
* Get the dictionary keys.
get_dict_param (DLSample, 'keys', [], SampleKeys)
if (DLResult != [])get_dict_param (DLResult, 'keys', [], ResultKeys)
endif
* 
* Get image ID if it is available.
get_dict_param (DLSample, 'key_exists', 'image_id', ImageIDExists)
if (ImageIDExists)get_dict_tuple (DLSample, 'image_id', ImageID)ImageIDString := 'image ID ' + ImageIDImageIDStringBraces := '(image ID ' + ImageID + ')'ImageIDStringCapital := 'Image ID ' + ImageID
elseImageIDString := ''ImageIDStringBraces := ImageIDStringImageIDStringCapital := ImageIDString
endif
* AdditionalGreenClassNames := []
KeyIndex := 0* whl添加if* 
* Check if DLDatasetInfo is valid.* whl添加
DLDatasetInfo:=DLDataInfo* Check if DLDatasetInfo contains necessary keys.ClassKeys := ['class_names', 'class_ids']get_handle_param (DLDatasetInfo, 'key_exists', ClassKeys, ClassKeysExist)if (min(ClassKeysExist) == 0)* In that case we expect that the class names and ids are never used.elseget_handle_param (DLDatasetInfo, 'keys', [], DLDatasetInfoKeys)for Index := 0 to |ClassKeys| - 1 by 1if (find_first(DLDatasetInfoKeys,ClassKeys[Index]) == -1)throw ('Key ' + ClassKeys[Index] + ' is missing in DLDatasetInfo.')endifendfor* * Get the general dataset information, if available.get_handle_tuple (DLDatasetInfo, 'class_names', ClassNames)get_handle_tuple (DLDatasetInfo, 'class_ids', ClassIDs)* * 为类定义不同的颜色*   get_dl_class_colors (ClassNames, AdditionalGreenClassNames, Colors)* 函数get_dl_class_colors 替代者,开始* Define distinct colors for the classes.
NumColors := |ClassNames|
* Get distinct colors without randomness makes neighboring colors look very similar.
* We use a workaround to get deterministic colors where subsequent colors are distinguishable.
get_distinct_colors (NumColors, false, 0, 200, ColorsRainbow)tuple_inverse (ColorsRainbow, ColorsRainbow)
make_neighboring_colors_distinguishable (ColorsRainbow, Colors)
* If a class 'OK','ok', 'good' or 'GOOD' or a class specified in AdditionalGreenClassNames is present set this class to green.
* Only the first occurrence found is set to a green shade.
tuple_union (['good', 'GOOD', 'ok', 'OK'], AdditionalGreenClassNames, ClassNamesGood)
for IndexFind := 0 to |ClassNamesGood| - 1 by 1GoodIdx := find_first(ClassNames,ClassNamesGood[IndexFind])if (GoodIdx != -1 and |ClassNames| <= 8)* If number of classes is <= 8, swap color with a green color.CurrentColor := Colors[GoodIdx]GreenIdx := floor(|ClassNames| / 2.0)* Set to pure green.Colors[GoodIdx] := '#00ff00'* Write original color to a green entry.Colors[GreenIdx] := CurrentColorbreakelseif (GoodIdx != -1 and |ClassNames| > 8)* If number of classes is larger than 8, set the respective color to green.Colors[GoodIdx] := '#00ff00'breakendif
endfor
* 函数get_dl_class_colors 替代者,结束endif* 
* ** Set window parameters: ***
* * 
* ** Display the data: ***
* 
* Display data dictionaries.
KeyIndex := 0*while (KeyIndex < |KeysForDisplay|)* * if (KeysForDisplay[KeyIndex] == 'bbox_result' or KeysForDisplay[KeyIndex] == 'ocr_detection_result')* * Result bounding boxes on image.图像上的结果边界框。get_dl_sample_image (Image, SampleKeys, DLSample, 'image')* get_dl_sample_image (ImageBatch, SampleKeys, DLSample, 'image')* * Get or open next window.训练时的图片宽高get_image_size (Image, WidthImage, HeightImage)* get_next_window (Params.font, Params.font_size, Params.display_bottom_desc, WidthImage, HeightImage, 0, Params.scale_windows, Params.threshold_width, PrevWindowCoordinates, WindowHandleDict, KeysForDisplay[KeyIndex], CurrentWindowHandle, WindowImageRatio, PrevWindowCoordinates)*原始代码,whl测试注释,训练时的压缩后图片* dev_display (Image)*whl添加,获取窗口尺寸* get_window_extents(WindowID1,Row,Column,Window_Width,Window_Height)*图片原图本身尺寸,非训练设置压缩的图片尺寸get_image_size (ImageBatch, WidthBig, HeightBig)*whl添加,比值*应该先把训练时图片的原始框点转换图片本身尺寸时的坐标就可以了imgRate:=1imgHeightBeiWidth:=1if(1)*宽度,乘以1.0转为小数,可以让除得到小数结果imgRate:=WidthBig/(WidthImage*1.0)* 高度占宽度的比值imgHeightBeiWidth:=HeightBig/(HeightImage*1.0)endif*whl 添加,显示原图片* 调整图像尺寸* zoom_image_size(ImageBatch,imgZoom,800,800*HeightBig/(WidthBig*1.0),'constant')* zoom_image_size(ImageBatch,imgZoom,800,800*HeightBig/(WidthBig*1.0),'constant')dev_clear_window()*whl 添加,显示原图片 dev_display(ImageBatch)*让窗口适应图片的尺寸,窗口跟图片一样大*   dev_resize_window_fit_image (ImageBatch, 0, 0, -1, -1)* dev_re* dev_open_window_fit_image (ImageBatch, 0, 0, -1, -1, WindowID1)*dev_resize_window_fit_size (0, 0, -1, -1, -1, -1)*full_domain(ImageBatch,ImageBatch)* dev_set_window(WindowID1)* dev_set_part*whl 添加测试WindowImageRatio:=1CurrentWindowHandle:=WindowID1*目标对象分类文本* className:=DLResult.bbox_class_name*显示目标对象框 *dev_display_result_detection (DLResult, ResultKeys, Params.line_width, ClassIDs, TextConf, Colors, Params.bbox_label_color, WindowImageRatio, 'top', Params.bbox_text_color, Params.display_labels, DisplayDirectionTemp, CurrentWindowHandle, BboxClassIndex)*dev_display_result_detection (DLResult, ResultKeys, Params.line_width, ClassIDs, TextConf, Colors, Params.bbox_label_color, WindowImageRatio, 'top', Params.bbox_text_color, Params.display_labels, DisplayDirectionTemp, CurrentWindowHandle, BboxClassIndex)*目标文本显示set_display_font (WindowID1, 12, 'mono', 'false', 'false')  *提取函数,显示目标对象框,识别分类文本,开始
InstanceType := ''
MaskExists := false
if (find(ResultKeys,'bbox_row1') != -1)   *进这个get_dict_tuple (DLResult, 'bbox_row1', BboxRow1)get_dict_tuple (DLResult, 'bbox_col1', BboxCol1)get_dict_tuple (DLResult, 'bbox_row2', BboxRow2)get_dict_tuple (DLResult, 'bbox_col2', BboxCol2)InstanceType := 'rectangle1'*1进入,0不进入if(1)     *whl 添加,乘以系数*高度BboxRow1:=BboxRow1*imgHeightBeiWidth        BboxRow2:=BboxRow2*imgHeightBeiWidth*宽度BboxCol1:=BboxCol1*imgRateBboxCol2:=BboxCol2*imgRate*whl 添加,重置为1imgRate:=1endifelseif (find(ResultKeys,'bbox_phi') != -1)get_dict_tuple (DLResult, 'bbox_row', BboxRow)get_dict_tuple (DLResult, 'bbox_col', BboxCol)get_dict_tuple (DLResult, 'bbox_length1', BboxLength1)get_dict_tuple (DLResult, 'bbox_length2', BboxLength2)get_dict_tuple (DLResult, 'bbox_phi', BboxPhi)get_dict_tuple (DLResult, 'bbox_class_id', BboxClasses)InstanceType := 'rectangle2'
elsethrow ('Result bounding box data could not be found in DLResult.')
endif
if (find(ResultKeys,'mask') != -1)get_dict_object (InstanceMask, DLResult, 'mask')MaskExists := true
endif
if (InstanceType != 'rectangle1' and InstanceType != 'rectangle2' and not MaskExists)throw ('Result bounding box or mask data could not be found in DLSample.')
endif*whl注释
get_dict_tuple (DLResult, 'bbox_class_id', BboxClasses)* whl 添加,显示检测对象名称*whl添加
ShowLabels:=true
ShowDirection:=true
TextColor:='#eeeeee'TextConf:=''if (|BboxClasses| > 0)* * Get text and text size for correct positioning of result class IDs.if (ShowLabels)Text := BboxClasses + TextConfget_string_extents (CurrentWindowHandle, Text, Ascent, Descent, _, _)TextOffset := (Ascent + Descent) / WindowImageRatioendif* * Generate bounding box XLDs.if (InstanceType == 'rectangle1')tuple_gen_const (|BboxRow1|, 0.0, BboxPhi)*画目标框线,乘以 imgRategen_rectangle2_contour_xld (BboxRectangle, 0.5 * (BboxRow1 + BboxRow2), 0.5 * (BboxCol1 + BboxCol2), BboxPhi, 0.5 * (BboxCol2 - BboxCol1), 0.5 * (BboxRow2 - BboxRow1))* gen_rectangle2_contour_xld (BboxRectangle, 0.5 * (BboxRow1  + BboxRow2)*imgRate, 0.5 * (BboxCol1 + BboxCol2)*imgRate, BboxPhi, 0.5 * (BboxCol2 - BboxCol1)*imgRate, 0.5 * (BboxRow2 - BboxRow1)*imgRate)if (ShowLabels)LabelRowTop := BboxRow1LabelRowBottom := BboxRow2 - TextOffsetLabelCol := BboxCol1endifelseif (InstanceType == 'rectangle2')gen_rectangle2_contour_xld (BboxRectangle, BboxRow, BboxCol, BboxPhi, BboxLength1, BboxLength2)if (ShowLabels)LabelRowTop := BboxRow - TextOffsetLabelRowBottom := BboxRowLabelCol := BboxColendifif (ShowDirection)if (ShowDirection == -1)ArrowSizeFactorLength := 0.4ArrowSizeFactorHead := 0.2MaxLengthArrow := 20HalfLengthArrow := min2(MaxLengthArrow,BboxLength1 * ArrowSizeFactorLength)ArrowBaseRow := BboxRow - (BboxLength1 - HalfLengthArrow) * sin(BboxPhi)ArrowBaseCol := BboxCol + (BboxLength1 - HalfLengthArrow) * cos(BboxPhi)ArrowHeadRow := BboxRow - (BboxLength1 + HalfLengthArrow) * sin(BboxPhi)ArrowHeadCol := BboxCol + (BboxLength1 + HalfLengthArrow) * cos(BboxPhi)ArrowHeadSize := min2(MaxLengthArrow,min2(BboxLength1,BboxLength2)) * ArrowSizeFactorHeadelseArrowHeadSize := 20.0ArrowBaseRow := BboxRowArrowBaseCol := BboxColArrowHeadRow := BboxRow - (BboxLength1 + ArrowHeadSize) * sin(BboxPhi)ArrowHeadCol := BboxCol + (BboxLength1 + ArrowHeadSize) * cos(BboxPhi)endifgen_arrow_contour_xld (OrientationArrows, ArrowBaseRow, ArrowBaseCol, ArrowHeadRow, ArrowHeadCol, ArrowHeadSize, ArrowHeadSize)endifelseif (MaskExists)area_center (InstanceMask, _, MaskRow, MaskCol)LabelRowTop := MaskRow - TextOffsetLabelRowBottom := MaskRowLabelCol := MaskColelsethrow ('Unknown instance_type: ' + InstanceType)endif* get_contour_style (CurrentWindowHandle, ContourStyle)dev_set_contour_style ('stroke')get_line_style (CurrentWindowHandle, Style)*whl添加LineWidthBbox:=1LineWidths := [LineWidthBbox + 2,LineWidthBbox]dev_set_line_width (LineWidthBbox)* * Collect ClassIDs of the bounding boxes.tuple_gen_const (|BboxClasses|, 0, BboxClassIndices)* * Draw bounding boxes.for IndexBbox := 0 to |BboxClasses| - 1 by 1ClassID := find(ClassIDs,BboxClasses[IndexBbox])BboxClassIndices[IndexBbox] := ClassID* First draw in black to make the class-color visible.CurrentColors := ['black',Colors[ClassID]]if (MaskExists)select_obj (InstanceMask, MaskSelected, IndexBbox + 1)dev_set_draw ('fill')dev_set_color (Colors[ClassID] + '80')dev_display (MaskSelected)dev_set_draw ('margin')endiffor IndexStyle := 0 to |CurrentColors| - 1 by 1dev_set_color (CurrentColors[IndexStyle])dev_set_line_width (LineWidths[IndexStyle])if (InstanceType != '')select_obj (BboxRectangle, RectangleSelected, IndexBbox + 1)dev_display (RectangleSelected)if (InstanceType == 'rectangle2' and ShowDirection)select_obj (OrientationArrows, ArrowSelected, IndexBbox + 1)dev_display (ArrowSelected)endifendifendforendfor* * Draw text of bounding boxes.if (ShowLabels)* For better visibility the text is displayed after all bounding boxes are drawn.* Get text and text size for correct positioning of result class IDs.* Text := BboxClasses + TextConf*whl 对象文本*bbox_class_name标签,bbox_confidence置信度得分whlObjectClassName:=DLResult.bbox_class_name*四舍五入,保留10位小数tuple_string(DLResult.bbox_confidence, '.10f', StringConfidence)     *截取字符串tuple_substr (StringConfidence, 0, 3, Substring)Text :=whlObjectClassName+ Substring* Select text color.if (TextColor == '')TextColorClasses := Colors[BboxClassIndices]elsetuple_gen_const (|BboxClassIndices|, TextColor, TextColorClasses)endif* Select correct position of the text.LabelRow := LabelRowTop*whl注释
*         if (TextPositionRow == 'bottom')*     LabelRow := LabelRowBottom* endif*whl添加,标签字体背景色BoxLabelColor:='#00000099'  * BoxLabelColor:='#05E600'* Display text.显示对象标签文本         dev_disp_text (Text, 'image', LabelRow, LabelCol, TextColorClasses, ['box_color', 'shadow', 'border_radius'], [BoxLabelColor,'false', 0])endif* dev_set_contour_style (ContourStyle)set_line_style (CurrentWindowHandle, Style)
else* Do nothing if no results are present.BboxClassIndices := []
endif*显示目标对象框,识别分类文本,结束*whl 注释,不执行if代码里面的代码endif* KeyIndex := KeyIndex + 1
*endwhile      * whl测试,目标框显示,结束             *whl注释* WindowHandles := WindowHandleDict.bbox_result* dev_set_window (WindowHandles[0])* set_display_font (WindowHandles[0], 16, 'mono', 'true', 'false')* whl测试* set_display_font (WindowID1, 16, 'mono', 'true', 'false')*whl注释,不显示绿色的检测文本列表*  dev_disp_text (Text, 'window', 'top', 'left', TextColor, ['box_color', 'shadow'], [TextBoxColor,'false'])set_display_font (WindowID1, 16, 'mono', 'true', 'false')  * dev_disp_text ('Press Run (F5) to continue', 'window', 'bottom', 'right', 'black', [], [])* 拆分字符串,图片路径     tuple_split(Batch,'\\',fileWordArr)Wordlength:=|fileWordArr|*取最后一个字符串fileShortName:=fileWordArr[Wordlength-1]*显示文件名dev_disp_text (fileShortName, 'window', 'bottom', 'left', 'magenta', [], [])*将窗口保存为本地图片文件* dump_window(WindowID1,'png','G:/机器视觉_测试项目/家具目标检测/videoImages/2')stop ()endfor
endfor
* 
* Close windows used for visualization.关闭用于可视化的窗口
*dev_close_window_dict (WindowHandleDict)
* 
* 
set_display_font (WindowID1, 24, 'mono', 'true', 'false')       dev_disp_text ('程序结束', 'window', 'bottom', 'right', 'green', ['box_color'], [ 'blue'])

本地函数 get_distinct_colors()

* 
* We get distinct color-values first in HLS color-space.
* Assumes hue [0, EndColor), lightness [0, 1), saturation [0, 1).
* 
* Parameter checks.
* NumColors.
if (NumColors < 1)throw ('NumColors should be at least 1')
endif
if (not is_int(NumColors))throw ('NumColors should be of type int')
endif
if (|NumColors| != 1)throw ('NumColors should have length 1')
endif
* Random.
if (Random != 0 and Random != 1)tuple_is_string (Random, IsString)if (IsString)Random := Random == 'true' or 'false'elsethrow ('Random should be either true or false')endif
endif
* StartColor.
if (|StartColor| != 1)throw ('StartColor should have length 1')
endif
if (StartColor < 0 or StartColor > 255)throw ('StartColor should be in the range [0, 255]')
endif
if (not is_int(StartColor))throw ('StartColor should be of type int')
endif
* EndColor.
if (|EndColor| != 1)throw ('EndColor should have length 1')
endif
if (EndColor < 0 or EndColor > 255)throw ('EndColor should be in the range [0, 255]')
endif
if (not is_int(EndColor))throw ('EndColor should be of type int')
endif
* 
* Color generation.
if (StartColor > EndColor)EndColor := EndColor + 255
endif
if (NumColors != 1)Hue := (StartColor + int((EndColor - StartColor) * real([0:NumColors - 1]) / real(NumColors - 1))) % 255
elseHue := mean([StartColor,EndColor])
endif
if (Random)Hue := Hue[sort_index(rand(NumColors))]Lightness := int((5.0 + rand(NumColors)) * 255.0 / 10.0)Saturation := int((9.0 + rand(NumColors)) * 255.0 / 10.0)
elseLightness := int(gen_tuple_const(NumColors,0.55) * 255.0)Saturation := int(gen_tuple_const(NumColors,0.95) * 255.0)
endif
* 
* Write colors to a 3-channel image in order to transform easier.
gen_image_const (HLSImageH, 'byte', 1, NumColors)
gen_image_const (HLSImageL, 'byte', 1, NumColors)
gen_image_const (HLSImageS, 'byte', 1, NumColors)
get_region_points (HLSImageH, Rows, Columns)
set_grayval (HLSImageH, Rows, Columns, Hue)
set_grayval (HLSImageL, Rows, Columns, Lightness)
set_grayval (HLSImageS, Rows, Columns, Saturation)
* 
* Convert from HLS to RGB.
trans_to_rgb (HLSImageH, HLSImageL, HLSImageS, ImageR, ImageG, ImageB, 'hls')
* 
* Get RGB-values and transform to Hex.
get_grayval (ImageR, Rows, Columns, Red)
get_grayval (ImageG, Rows, Columns, Green)
get_grayval (ImageB, Rows, Columns, Blue)
Colors := '#' + Red$'02x' + Green$'02x' + Blue$'02x'
return ()
* 

本地函数 make_neighboring_colors_distinguishable()

* 
* Shuffle the input colors in a deterministic way
* to make adjacent colors more distinguishable.
* Neighboring colors from the input are distributed to every NumChunks
* position in the output.
* Depending on the number of colors, increase NumChunks.
NumColors := |ColorsRainbow|
if (NumColors >= 8)NumChunks := 3if (NumColors >= 40)NumChunks := 6elseif (NumColors >= 20)NumChunks := 4endifColors := gen_tuple_const(NumColors,-1)* Check if the Number of Colors is dividable by NumChunks.NumLeftOver := NumColors % NumChunksColorsPerChunk := int(NumColors / NumChunks)StartIdx := 0for S := 0 to NumChunks - 1 by 1EndIdx := StartIdx + ColorsPerChunk - 1if (S < NumLeftOver)EndIdx := EndIdx + 1endifIdxsLeft := [S:NumChunks:NumColors - 1]IdxsRight := [StartIdx:EndIdx]Colors[S:NumChunks:NumColors - 1] := ColorsRainbow[StartIdx:EndIdx]StartIdx := EndIdx + 1endfor
elseColors := ColorsRainbow
endif
return ()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/895971.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2.19学习(php文件后缀)

misc buu-后门查杀 下载附件&#xff0c;我们用火绒安全扫一下然后点击详情进入该文件所在文件夹&#xff0c;再用记事本打开该文件&#xff0c;搜索flag无果&#xff0c;再试试pass&#xff08;由题目中的密码联系到pass&#xff0c;password&#xff0c;key等&#xff09;&a…

PMBOK第7版整体架构全面详解

1. 引言 7月1日对于项目管理从业者和研究者而言&#xff0c;是个非凡意义的一个时间&#xff0c;这一天&#xff0c;翘首以待的《 项 目管理知识体系指南 》&#xff08;PMBOK&#xff09;第七版终于发布了。 总体而言&#xff0c;PMBOK第七版集百家之所长&#xff0c;成一…

C++:类与对象,定义类和构造函数

#define _CRT_SECURE_NO_WARNINGS 1 #include <iostream> using namespace std; //如何让定义一个类 // 封装 // 1、将数据和方法定义到一起。 // 2、把想给你看的数据给你看&#xff0c;不想给你看的封装起来。 通过访问限定符来实现 class Stack { public: //1.成…

nginx 部署前端vue项目

?? 主页&#xff1a; ?? 感谢各位大佬 点赞?? 收藏 留言?? 加关注! ?? 收录于专栏&#xff1a;前端工程师 文章目录 一、??什么是nginx&#xff1f;二、??nginx 部署前端vue项目步骤 2.1 ??安装nginx 2.1.1 ??windows环境安装2.1.2 ??linux环境安装 2.2 …

蓝桥杯备考策略

备赛策略 (1-2周):基础算法数据结构 (3-5周):动态规划/贪心图论 (6-8周):全真模拟查漏补缺 阶段1:基础巩固(第1-2周) **目标:**掌握基础数据结构和必考算法&#xff0c;熟悉蓝桥杯题型。 学习内容: 数据结构:数组、字符串、栈、队列、哈希表、二叉树(遍历与基本操作)。 基础…

tmux和vim的基本操作

Tmux Tmux 的核心功能 多窗口和多面板&#xff1a; 在一个终端中创建多个窗口&#xff08;Windows&#xff09;&#xff0c;每个窗口可以运行不同的任务。 在每个窗口中&#xff0c;可以进一步分割成多个面板&#xff08;Panes&#xff09;&#xff0c;实现分屏操作。 会话…

HTTP SSE 实现

参考&#xff1a; SSE协议 SSE技术详解&#xff1a;使用 HTTP 做服务端数据推送应用的技术 一句概扩 SSE可理解为&#xff1a;服务端和客户端建立连接之后双方均保持连接&#xff0c;但仅支持服务端向客户端推送数据。推送完毕之后关闭连接&#xff0c;无状态行。 下面是基于…

推荐一款AI大模型托管平台-OpenWebUI

推荐一款AI大模型托管平台-OpenWebUI 1. OpenWebUI 1. OpenWebUI什么? 官网地址&#xff1a;https://openwebui.com/ GitHub地址&#xff1a; https://github.com/open-webui/open-webui Open WebUI 是一个可扩展、功能丰富且用户友好的自托管 AI 平台&#xff0c;旨在完全离…

java练习(33)

ps:题目来自力扣 最强回文子串 给你一个字符串 s&#xff0c;找到 s 中最长的 回文 子串。 class Solution {public String longestPalindrome(String s) {if (s null || s.length() < 1) {return "";}int start 0, end 0;for (int i 0; i < s.length();…

本地部署DeepSeek大模型

环境&#xff1a;nuc工控机器 x86架构 ubuntu20.04 1、浏览器打开Download Ollama on Linux&#xff0c;复制命令。 2.打开终端&#xff0c;输入命令。 curl -fsSL https://ollama.com/install.sh | sh 等待安装&#xff0c;安装完成后&#xff0c;终端输入 ollama&#xff…

【Spring详解一】Spring整体架构和环境搭建

一、Spring整体架构和环境搭建 1.1 Spring的整体架构 Spring框架是一个分层架构&#xff0c;包含一系列功能要素&#xff0c;被分为大约20个模块 Spring核心容器&#xff1a;包含Core、Bean、Context、Expression Language模块 Core &#xff1a;其他组件的基本核心&#xff…

用openresty和lua实现壁纸投票功能

背景 之前做了一个随机壁纸接口&#xff0c;但是不知道大家喜欢对壁纸的喜好&#xff0c;所以干脆在实现一个投票功能&#xff0c;让用户给自己喜欢的壁纸进行投票。 原理说明 1.当访问http://demo.com/vote/时&#xff0c;会从/home/jobs/webs/imgs及子目录下获取图片列表&…

LLaMA 3.1 模型在DAMODEL平台的部署与实战:打造智能聊天机器人

文章目录 前言 一、LLaMA 3.1 的特点 二、LLaMA3.1的优势 三、LLaMA3.1部署流程 &#xff08;一&#xff09;创建实例 &#xff08;二&#xff09;通过JupyterLab登录实例 &#xff08;3&#xff09;部署LLaMA3.1 &#xff08;4&#xff09;使用教程 总结 前言 LLama3…

【复现DeepSeek-R1之Open R1实战】系列8:混合精度训练、DeepSpeed、vLLM和LightEval介绍

这里写目录标题 1 混合精度训练1.1 FP16和FP321.2 优点1.3 存在的问题1.4 解决办法 2 DeepSpeed3 vLLM3.1 存在的问题3.2 解决方法3.2.1 PagedAttention3.2.2 KV Cache Manager3.2.3 其他解码场景 3.3 结论 4 LightEval4.1 主要功能4.2 使用方法4.3 应用场景 本文继续深入了解O…

【分布式理论15】分布式调度1:分布式资源调度的由来与过程

文章目录 一、操作系统的资源调度&#xff1a;从单核到多核二、 分布式系统的资源调度&#xff1a;从单台服务器到集群三、 固定资源映射四、 动态资源分配&#xff1a;灵活的任务-资源匹配五、 资源调度过程&#xff1a;从申请到执行 本文主要讨论主题&#xff1a; 从操作系统…

Vue 实现通过URL浏览器本地下载 PDF 和 图片

1、代码实现如下&#xff1a; 根据自己场景判断 PDF 和 图片&#xff0c;下载功能可按下面代码逻辑执行 const downloadFile async (item: any) > {try {let blobUrl: any;// PDF本地下载if (item.format pdf) {const response await fetch(item.url); // URL传递进入i…

计算机网络基础杂谈(局域网、ip、子网掩码、网关、DNS)

目录 1. 简单局域网的构成 2. IP 地址 3. 子网掩码 4. IP地址详解自定义IP 5. IP 地址详解 6. 网关 7. DNS 域名解析 8. ping 1. 简单局域网的构成 交换机是组建局域网最重要的设备&#xff0c;换句话说&#xff0c;没有交换机就没法搭建局域网 交换机不能让局域网连…

Thor: 统一AI模型网关的革新之选

项目价值 Thor(雷神托尔)作为一个强大的AI模型管理网关&#xff0c;解决了当前AI领域一个关键痛点&#xff1a;不同AI服务商的API格式各异&#xff0c;集成成本高。Thor通过将各种AI模型的独特格式统一转换为OpenAI格式&#xff0c;显著降低了开发者的使用门槛和维护成本。 核…

25年2月通信基础知识补充:多普勒频移与多普勒扩展、3GPP TDL信道模型

看文献过程中不断发现有太多不懂的基础知识&#xff0c;故长期更新这类blog不断补充在这过程中学到的知识。由于这些内容与我的研究方向并不一定强相关&#xff0c;故记录不会很深入请见谅。 【通信基础知识补充7】25年2月通信基础知识补充1 一、多普勒频移与多普勒扩展傻傻分不…

【Python】Python入门——笔记合集

哈哈 00、环境搭建 学习Python&#xff0c;首先需要搭建一个本地开发环境&#xff0c;或是使用线上开发环境&#xff08;各类练习网站&#xff09;&#xff0c;这篇博客里主要记录了本地开发环境的配置方法。内容包括python解释器的安装以及pycharm的安装、汉化等。 博客地…