做百度糯米网站的团队/济宁百度推广开户

做百度糯米网站的团队,济宁百度推广开户,湖南张家界,网页设计什么软件三 矩阵乘法和逆矩阵 1. 矩阵乘法1.1 常规方法1.2 列向量组合1.3 行向量组合1.4 单行和单列的乘积和1.5 块乘法 2. 逆矩阵2.1 逆矩阵的定义2.2 奇异矩阵2.3 Gauss-Jordan 求逆矩阵2.3.1 求逆矩阵 ⟺ \Longleftrightarrow ⟺解方程组2.3.2 Gauss-Jordan求逆矩阵 1. 矩阵乘法 1.…

三 矩阵乘法和逆矩阵

1. 矩阵乘法

1.1 常规方法

[ . . . . . . . . . . . . a 31 a 32 a 33 a 34 . . . . . . . . . . . . ] ⏟ A m ∗ n [ . . . . . . . . . b 14 . . . . . . . . . b 24 . . . . . . . . . b 34 . . . . . . . . . b 44 ] ⏟ B n ∗ p = [ . . . . . . . . . . . . . . . . . . . . . C 34 . . . . . . . . . . . . ] ⏟ C m ∗ p \underbrace{\begin{bmatrix} ...&...&...&...\\ a_{31}&a_{32}&a_{33}&a_{34}\\ ...&...&...&...\\ \end{bmatrix}}_{A_{m*n}} \underbrace{\begin{bmatrix} ...&...&...&b_{14}\\ ...&...&...&b_{24}\\ ...&...&...&b_{34}\\ ...&...&...&b_{44} \end{bmatrix}}_{B_{n*p}}= \underbrace{\begin{bmatrix} ...&...&...&...\\ ...&...&...&C_{34}\\ ...&...&...&... \end{bmatrix}}_{C_{m*p}} Amn ...a31......a32......a33......a34... Bnp ....................................b14b24b34b44 =Cmp ..............................C34...
C 34 = A r o w 3 ∗ B c o l 4 = ∑ i = 1 n a 3 i ∗ b i 4 C_{34} = A_{row_3}*B_{col_4} = \sum\limits_{i=1}^{n}a_{3i}*b_{i4} C34=Arow3Bcol4=i=1na3ibi4

1.2 列向量组合

已知
[ A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 ] [ B 11 B 21 B 31 ] = B 11 ∗ A c o l 1 + B 21 ∗ A c o l 2 + B 31 ∗ A c o l 3 = [ B 11 ∗ A 11 + B 21 ∗ A 12 + B 31 ∗ A 13 B 11 ∗ A 21 + B 21 ∗ A 22 + B 31 ∗ A 23 B 11 ∗ A 31 + B 21 ∗ A 32 + B 31 ∗ A 33 ] \begin{aligned} \begin{bmatrix} A_{11}&A_{12}&A_{13}\\ A_{21}&A_{22}&A_{23}\\ A_{31}&A_{32}&A_{33} \end{bmatrix} \begin{bmatrix} B_{11}\\ B_{21}\\ B_{31} \end{bmatrix} &=B_{11}*A_{col1}+B_{21}*A_{col2}+B_{31}*A_{col3} \newline &= \begin{bmatrix} B_{11}*A_{11}+B_{21}*A_{12}+B_{31}*A_{13}\\ B_{11}*A_{21}+B_{21}*A_{22}+B_{31}*A_{23}\\ B_{11}*A_{31}+B_{21}*A_{32}+B_{31}*A_{33} \end{bmatrix}\end{aligned} A11A21A31A12A22A32A13A23A33 B11B21B31 =B11Acol1+B21Acol2+B31Acol3= B11A11+B21A12+B31A13B11A21+B21A22+B31A23B11A31+B21A32+B31A33
那么
[ A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 ] ⏟ A [ B 11 B 12 B 21 B 22 B 31 B 32 ] ⏟ B = [ B 11 ∗ A c o l 1 + B 21 ∗ A c o l 2 + B 31 ∗ A c o l 3 B 12 ∗ A c o l 1 + B 22 ∗ A c o l 2 + B 32 ∗ A c o l 3 ] ⏟ C = [ B 11 ∗ A 11 + B 21 ∗ A 12 + B 31 ∗ A 13 B 12 ∗ A 11 + B 22 ∗ A 12 + B 32 ∗ A 13 B 11 ∗ A 21 + B 21 ∗ A 22 + B 31 ∗ A 23 B 12 ∗ A 21 + B 22 ∗ A 22 + B 32 ∗ A 23 B 11 ∗ A 31 + B 21 ∗ A 32 + B 31 ∗ A 33 B 12 ∗ A 31 + B 22 ∗ A 32 + B 32 ∗ A 33 ] \begin{aligned} \underbrace{\begin{bmatrix} A_{11}&A_{12}&A_{13}\\ A_{21}&A_{22}&A_{23}\\ A_{31}&A_{32}&A_{33} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} B_{11}&B_{12}\\ B_{21}&B_{22}\\ B_{31}&B_{32} \end{bmatrix}}_{B} &=\underbrace{\begin{bmatrix}B_{11}*A_{col1}+B_{21}*A_{col2}+B_{31}*A_{col3} & B_{12}*A_{col1}+B_{22}*A_{col2}+B_{32}*A_{col3}\end{bmatrix}}_{C} \newline &=\begin{bmatrix} B_{11}*A_{11}+B_{21}*A_{12}+B_{31}*A_{13}& B_{12}*A_{11}+B_{22}*A_{12}+B_{32}*A_{13}\\ B_{11}*A_{21}+B_{21}*A_{22}+B_{31}*A_{23} & B_{12}*A_{21}+B_{22}*A_{22}+B_{32}*A_{23}\\ B_{11}*A_{31}+B_{21}*A_{32}+B_{31}*A_{33} & B_{12}*A_{31}+B_{22}*A_{32}+B_{32}*A_{33} \end{bmatrix}\end{aligned} A A11A21A31A12A22A32A13A23A33 B B11B21B31B12B22B32 =C [B11Acol1+B21Acol2+B31Acol3B12Acol1+B22Acol2+B32Acol3]= B11A11+B21A12+B31A13B11A21+B21A22+B31A23B11A31+B21A32+B31A33B12A11+B22A12+B32A13B12A21+B22A22+B32A23B12A31+B22A32+B32A33
C矩阵是A矩阵的列向量组合

1.3 行向量组合

已知
[ A 11 A 12 A 13 ] [ B 11 B 12 B 21 B 22 B 31 B 32 ] = A 11 ∗ B r o w 1 + A 12 ∗ B r o w 2 + A 13 ∗ B r o w 3 = [ A 11 ∗ B 11 A 11 ∗ B 12 + + A 12 ∗ B 21 A 12 ∗ B 22 + + A 13 ∗ B 31 A 13 ∗ B 32 ] \begin{aligned} \begin{bmatrix} A_{11}&A_{12}&A_{13} \end{bmatrix} \begin{bmatrix} B_{11}&B_{12}\\ B_{21}&B_{22}\\ B_{31}&B_{32} \end{bmatrix} &=A_{11}*B_{row1}+A_{12}*B_{row2}+A_{13}*B_{row3} \newline &= \begin{bmatrix} A_{11}*B_{11}&A_{11}*B_{12}\\ +&+\\ A_{12}*B_{21}&A_{12}*B_{22}\\ +&+\\ A_{13}*B_{31}&A_{13}*B_{32} \end{bmatrix}\end{aligned} [A11A12A13] B11B21B31B12B22B32 =A11Brow1+A12Brow2+A13Brow3= A11B11+A12B21+A13B31A11B12+A12B22+A13B32
那么
[ A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 ] ⏟ A [ B 11 B 12 B 21 B 22 B 31 B 32 ] ⏟ B = [ A 11 ∗ B r o w 1 + A 12 ∗ B r o w 2 + A 13 ∗ B r o w 3 A 21 ∗ B r o w 1 + A 22 ∗ B r o w 2 + A 23 ∗ B r o w 3 A 31 ∗ B r o w 1 + A 32 ∗ B r o w 2 + A 33 ∗ B r o w 3 ] ⏟ C \begin{aligned} \underbrace{\begin{bmatrix} A_{11}&A_{12}&A_{13}\\ A_{21}&A_{22}&A_{23}\\ A_{31}&A_{32}&A_{33} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} B_{11}&B_{12}\\ B_{21}&B_{22}\\ B_{31}&B_{32} \end{bmatrix}}_{B} &=\underbrace{\begin{bmatrix} A_{11}*B_{row1}+A_{12}*B_{row2}+A_{13}*B_{row3}\\ A_{21}*B_{row1}+A_{22}*B_{row2}+A_{23}*B_{row3}\\ A_{31}*B_{row1}+A_{32}*B_{row2}+A_{33}*B_{row3} \end{bmatrix}}_{C} \newline \end{aligned} A A11A21A31A12A22A32A13A23A33 B B11B21B31B12B22B32 =C A11Brow1+A12Brow2+A13Brow3A21Brow1+A22Brow2+A23Brow3A31Brow1+A32Brow2+A33Brow3
C矩阵是B矩阵的行向量组合

1.4 单行和单列的乘积和

[ 2 7 3 8 4 9 ] [ 1 6 1 1 ] = [ 2 3 4 ] [ 1 6 ] + [ 7 8 9 ] [ 1 1 ] = [ 9 19 11 26 13 33 ] \begin{aligned} \begin{bmatrix} 2&7\\ 3&8\\ 4&9 \end{bmatrix} \begin{bmatrix} 1&6\\ 1&1\\ \end{bmatrix} &= \begin{bmatrix} 2\\ 3\\ 4 \end{bmatrix} \begin{bmatrix} 1&6\\ \end{bmatrix} + \begin{bmatrix} 7\\ 8\\ 9 \end{bmatrix} \begin{bmatrix} 1&1\\ \end{bmatrix} \newline &= \begin{bmatrix} 9&19\\ 11&26\\ 13&33 \end{bmatrix} \end{aligned} 234789 [1161]= 234 [16]+ 789 [11]= 91113192633

1.5 块乘法

[ A 1 ∣ A 2 —— —— —— A 3 ∣ A 4 ] [ B 1 ∣ B 2 —— —— —— B 3 ∣ B 4 ] = [ A 1 ∗ B 1 + A 2 ∗ B 3 ∣ A 1 ∗ B 2 + A 2 ∗ B 4 ———————— —— ———————— A 3 ∗ B 1 + A 4 ∗ B 3 ∣ A 3 ∗ B 2 + A 4 ∗ B 4 ] \begin{bmatrix} A_{1}&|&A_{2}\\ ——&——&——\\ A_{3}&|&A_{4} \end{bmatrix} \begin{bmatrix} B_{1}&|&B_{2}\\ ——&——&——\\ B_{3}&|&B_{4} \end{bmatrix} =\begin{bmatrix} A_{1}*B_{1}+A_2*B_{3}&|&A_{1}*B_{2}+A_2*B_{4}\\ ————————&——&————————\\ A_{3}*B_{1}+A_4*B_{3}&|&A_{3}*B_{2}+A_4*B_{4} \end{bmatrix} A1——A3——A2——A4 B1——B3——B2——B4 = A1B1+A2B3————————A3B1+A4B3——A1B2+A2B4————————A3B2+A4B4

2. 逆矩阵

2.1 逆矩阵的定义

存在
A − 1 A = I A^{-1}A = I A1A=I
那么,称 A − 1 A^{-1} A1为A的逆矩阵,A是可逆的,记为非奇异矩阵

当A为方阵(行数=列数)时,左逆矩阵=右逆矩阵
A − 1 A = I = A A − 1 A^{-1}A = I=AA^{-1} A1A=I=AA1

2.2 奇异矩阵

存在 A x = 0 ( x 非零向量 ) ⇒ A 不可逆 Ax=0(x非零向量)\Rightarrow A不可逆 Ax=0(x非零向量)A不可逆
证明如下
A x = 0 ⇒ A − 1 A = I A − 1 A x = 0 ⇒ x = 0 (与 x 为非零向量冲突) \begin{aligned} &Ax = 0 \newline&\xRightarrow{A^{-1}A=I} A^{-1}Ax=0\newline &\xRightarrow{} x=0 (与x为非零向量冲突) \end{aligned} Ax=0A1A=I A1Ax=0 x=0(与x为非零向量冲突)

延伸(学习了后面的列向量等):

  • A x Ax Ax是A的列向量的线性组合, A x = 0 有解 Ax=0有解 Ax=0有解说明,存在A的列向量的组合为0,A不是满秩矩阵。
  • 那么奇异矩阵不是满秩矩阵
    那能不能说明由此推导出满秩矩阵可逆?
    好像不是很充分,除非能推导出 A x = 0 ( x 非零向量 ) 无解 ⇒ A 可逆 Ax=0(x非零向量)无解\Rightarrow A可逆 Ax=0(x非零向量)无解A可逆
2.3 Gauss-Jordan 求逆矩阵
2.3.1 求逆矩阵 ⟺ \Longleftrightarrow 解方程组

[ 1 3 2 7 ] ⏟ A [ a c b d ] ⏟ A − 1 = [ 1 0 0 1 ] ⏟ I ⟺ { a + 3 b = 1 2 c + 7 d = 1 \underbrace{\begin{bmatrix} 1&3\\ 2&7 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} a&c\\ b&d \end{bmatrix}}_{A^{-1}} =\underbrace{\begin{bmatrix} 1&0\\ 0&1 \end{bmatrix}}_{I} \Longleftrightarrow \begin{cases} a+3b=1 \\ 2c+7d=1\\ \end{cases} A [1237]A1 [abcd]=I [1001]{a+3b=12c+7d=1

2.3.2 Gauss-Jordan求逆矩阵

A A − 1 = I AA^{-1}=I AA1=I 可写为:
{ [ 1 3 2 7 ] [ a b ] = [ 1 0 ] [ 1 3 2 7 ] [ c d ] = [ 0 1 ] \begin{cases} \begin{bmatrix} 1&3\\ 2&7 \end{bmatrix} \begin{bmatrix} a\\b \end{bmatrix} = \begin{bmatrix} 1\\0 \end{bmatrix} \\\\ \begin{bmatrix} 1&3\\ 2&7 \end{bmatrix} \begin{bmatrix} c\\d \end{bmatrix} = \begin{bmatrix} 0\\1 \end{bmatrix} \end{cases} [1237][ab]=[10][1237][cd]=[01]

[ 1 3 1 0 2 7 0 1 ] ⏟ 增广矩阵[A|I] ⇒ r o w 2 − 2 r o w 1 [ 1 3 1 0 0 1 − 2 1 ] ⇒ r o w 1 − 3 r o w 2 [ 1 0 7 − 3 0 1 − 2 1 ] ⏟ [ I ∣ E ] \begin{aligned} \underbrace{\begin{bmatrix} 1&3&1&0\\ 2&7&0&1 \end{bmatrix}}_{\text{增广矩阵[A|I]}} &\xRightarrow{row_{2}-2row_{1}} \begin{bmatrix} 1&3&1&0\\ 0&1&-2&1 \end{bmatrix} \newline&\xRightarrow{row_{1}-3row_{2}} \underbrace{\begin{bmatrix} 1&0&7&-3\\ 0&1&-2&1 \end{bmatrix}}_{[I|E]} \end{aligned} 增广矩阵[A|I] [12371001]row22row1 [10311201]row13row2 [IE] [10017231]
第一种,老师上课讲的,公式推导
E [ A I ] = [ I E ] ⇒ E A = I ⇒ E = A − 1 E\begin{bmatrix} A&I \end{bmatrix} =\begin{bmatrix} I&E \end{bmatrix} \Rightarrow EA=I \Rightarrow E = A^{-1} E[AI]=[IE]EA=IE=A1
ps:

  • 从矩阵A经过消元变成了单位矩阵, 那么A满秩,不然变不成单位矩阵。
  • 所以说,如果A可逆,那么A一定是满秩矩阵。
  • 如果A满秩,那么A一定可逆。

第二种,回代到方程组中,也能求出解
{ [ 1 0 0 1 ] [ a b ] = [ 7 − 2 ] [ 1 0 0 1 ] [ c d ] = [ − 3 1 ] ⇒ { a = 7 b = − 2 c = − 3 d = 1 \begin{cases} \begin{bmatrix} 1&0\\ 0&1 \end{bmatrix} \begin{bmatrix} a\\b \end{bmatrix} = \begin{bmatrix} 7\\-2 \end{bmatrix} \\\\ \begin{bmatrix} 1&0\\ 0&1 \end{bmatrix} \begin{bmatrix} c\\d \end{bmatrix} = \begin{bmatrix} -3\\1 \end{bmatrix} \end{cases} \Rightarrow \begin{cases} a = 7\\ b=-2\\ c=-3\\ d=1 \end{cases} [1001][ab]=[72][1001][cd]=[31] a=7b=2c=3d=1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/895595.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在nodejs中使用RabbitMQ(六)sharding消息分片

RabbitMQ 的分片插件(rabbitmq_sharding)允许将消息分布到多个队列中,这在消息量很大或处理速度要求高的情况下非常有用。分片功能通过将消息拆分到多个队列中来平衡负载,从而提升消息处理的吞吐量和可靠性。它能够在多个队列之间…

【D2】神经网络初步学习

总结:学习了 PyTorch 中的基本概念和常用功能,张量(Tensor)的操作、自动微分(Autograd)、正向传播、反向传播。通过了解认识LeNet 模型,定义神经网络类,熟悉卷积神经网络的基本结构和…

DeepSeek处理自有业务的案例:让AI给你写一份小众编辑器(EverEdit)的语法着色文件

1 DeepSeek处理自有业务的案例:让AI给你写一份小众编辑器(EverEdit)的语法着色文件 1.1 背景 AI能力再强,如果不能在企业的自有业务上产生助益,那基本也是一无是处。将企业的自有业务上传到线上训练,那是脑子进水的做法&#xff…

深入浅出Java反射:掌握动态编程的艺术

小程一言反射何为反射反射核心类反射的基本使用获取Class对象创建对象调用方法访问字段 示例程序应用场景优缺点分析优点缺点 注意 再深入一些反射与泛型反射与注解反射与动态代理反射与类加载器 结语 小程一言 本专栏是对Java知识点的总结。在学习Java的过程中,学习…

【算法与数据结构】并查集详解+题目

目录 一,什么是并查集 二,并查集的结构 三,并查集的代码实现 1,并查集的大致结构和初始化 2,find操作 3,Union操作 4,优化 小结: 四,并查集的应用场景 省份…

C语言简单练习题

文章目录 练习题一、计算n的阶乘bool类型 二、计算1!2!3!...10!三、计算数组arr中的元素个数二分法查找 四、动态打印字符Sleep()ms延时函数system("cls")清屏函数 五、模拟用户登录strcmp()函数 六、猜数字小游戏产生一个随机数randsrandRAND_MAX时间戳time() 示例 …

ShenNiusModularity项目源码学习(8:数据库操作)

ShenNiusModularity项目使用SqlSugar操作数据库。在ShenNius.Repository项目中定义了ServiceCollectionExtensions.AddSqlsugarSetup函数注册SqlSugar服务,并在ShenNius.Admin.API项目的ShenniusAdminApiModule.OnConfigureServices函数中调用,SqlSugar所…

MATLAB图像处理:图像特征概念及提取方法HOG、SIFT

图像特征是计算机视觉中用于描述图像内容的关键信息,其提取质量直接影响后续的目标检测、分类和匹配等任务性能。本文将系统解析 全局与局部特征的核心概念,深入讲解 HOG(方向梯度直方图)与SIFT(尺度不变特征变换&…

小白win10安装并配置yt-dlp

需要yt-dlp和ffmpeg 注意存放路径最好都是全英文 win10安装并配置yt-dlp 一、下载1.下载yt-dlp2. fffmpeg下载 二、配置环境三、cmd操作四、yt-dlp下视频操作 一、下载 1.下载yt-dlp yt-dlp地址 找到win的压缩包点下载,并解压 2. fffmpeg下载 ffmpeg官方下载 …

【技术解析】MultiPatchFormer:多尺度时间序列预测的全新突破

今天给我大家带来一篇最新的时间序列预测论文——MultiPatchFormer。这篇论文提出了一种基于Transformer的创新模型,旨在解决时间序列预测中的关键挑战,特别是在处理多尺度时间依赖性和复杂通道间相关性时的难题。MultiPatchFormer通过引入一维卷积技术&…

145,【5】 buuctf web [GWCTF 2019]mypassword

进入靶场 修改了url后才到了注册页面 注测后再登录 查看源码 都点进去看看 有个反馈页面 再查看源码 又有收获 // 检查$feedback是否为数组 if (is_array($feedback)) {// 如果是数组&#xff0c;弹出提示框提示反馈不合法echo "<script>alert(反馈不合法);<…

晶闸管主要参数分析与损耗计算

1. 主要参数 断态正向可重复峰值电压 :是晶闸管在不损坏的情况下能够承受的正向最大阻断电压。断态正向不可重复峰值电压 :是晶闸管只有一次可以超过的正向最大阻断电压,一旦晶闸管超过此值就会损坏,一般情况下 反向可重复峰值电压 :是指晶闸管在不损坏的情况下能够承受的…

el-select 设置宽度 没效果

想实现下面的效果&#xff0c;一行两个&#xff0c;充满el-col12 然后设置了 width100%,当时一直没有效果 解决原因&#xff1a; el-form 添加了 inline 所以删除inline属性 即可

一款利器提升 StarRocks 表结构设计效率

CloudDM 个人版是一款数据库数据管理客户端工具&#xff0c;支持 StarRocks 可视化建表&#xff0c;创建表时可选择分桶、配置数据模型。目前版本持续更新&#xff0c;在修改 StarRocks 表结构方面进一步优化&#xff0c;大幅提升 StarRocks 表结构设计效率。当前 CloudDM 个人…

数量5 - 平面图形、立体几何

目录 一、平面几何问题1.三角形2.其他图形二、立体几何与特殊几何1.表面积2.体积3.等比放缩(简单)4.几何最值(简单)5.最短路径一、平面几何问题 平面图形: 立体图形: 1.三角形 特殊直角

CAS单点登录(第7版)7.授权

如有疑问&#xff0c;请看视频&#xff1a;CAS单点登录&#xff08;第7版&#xff09; 授权 概述 授权和访问管理 可以使用以下策略实施授权策略以保护 CAS 中的应用程序和依赖方。 服务访问策略 服务访问策略允许您定义授权和访问策略&#xff0c;以控制对向 CAS 注册的…

53倍性能提升!TiDB 全局索引如何优化分区表查询?

作者&#xff1a; Defined2014 原文来源&#xff1a; https://tidb.net/blog/7077577f 什么是 TiDB 全局索引 在 TiDB 中&#xff0c;全局索引是一种定义在分区表上的索引类型&#xff0c;它允许索引分区与表分区之间建立一对多的映射关系&#xff0c;即一个索引分区可以对…

I.MX6ull-I2C

一,I2C总线介绍 I2C(Inter-Integrated Circuit 集成电路)总线是Philips公司在八十年代初推出的一种串行、半双工的总 线&#xff0c;主要用于近距离、低速的芯片之间的通信&#xff1b;I2C总线有两根双向的信号线&#xff0c;一根数据线SDA用于收 发数据&#xff0c;一根时钟线…

书籍推荐:《书法课》林曦

记得樊登老师说过&#xff0c;如果你想了解一个事物&#xff0c;就去读5本相关的书&#xff0c;你会比大部分人都更了解它。这是我读的第4本和“书法”有关的书&#xff0c;作为一个零基础的成年人&#xff0c;林曦这本《书法课》非常值得一读。&#xff08;无论你是否写字&…

【大疆无人机地图测绘技术学习:高精度、高效率的全流程解决方案】

文章目录 大疆无人机地图测绘算法详解一、数据采集&#xff08;一&#xff09;飞行平台与传感器&#xff08;二&#xff09;航线规划&#xff08;三&#xff09;数据类型 二、数据处理与建模&#xff08;一&#xff09;数据导入与预处理&#xff08;二&#xff09;空三计算&…