目录
- 1. 高级WordCount
- 1.1 IntWritable降序排列
- 1.2 输入输出格式
- 1.3 处理流程
- 2. 代码和结果
- 2.1 pom.xml中依赖配置
- 2.2 工具类util
- 2.3 高级WordCount
- 2.4 结果
- 参考
本文引用的Apache Hadoop源代码基于Apache许可证 2.0,详情请参阅 Apache许可证2.0。
1. 高级WordCount
文本内容就是下文2.3中的代码,目标是要实现文本计数,并且数量在前,文本在后,同时数量要升序排列。
1.1 IntWritable降序排列
IntWritable类型中实现一个升序排列的比较器,代码如下。而实现IntWritable降序排序只需要定义一个新类,继承IntWritable.Comparator,并且重载public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2)
,使其返回值为父类该方法返回值的相反数。此外,如果你想要让作为键的IntWritable类型进行降序排列,还需要在MapReduce任务调度代码中设置Job.setSortComparatorClass(比较器.class)
。
/*** Licensed to the Apache Software Foundation (ASF) under one* or more contributor license agreements. See the NOTICE file* distributed with this work for additional information* regarding copyright ownership. The ASF licenses this file* to you under the Apache License, Version 2.0 (the* "License"); you may not use this file except in compliance* with the License. You may obtain a copy of the License at** http://www.apache.org/licenses/LICENSE-2.0** Unless required by applicable law or agreed to in writing, software* distributed under the License is distributed on an "AS IS" BASIS,* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.* See the License for the specific language governing permissions and* limitations under the License.*/public static class Comparator extends WritableComparator {public Comparator() {super(IntWritable.class);}@Overridepublic int compare(byte[] b1, int s1, int l1,byte[] b2, int s2, int l2) {int thisValue = readInt(b1, s1);int thatValue = readInt(b2, s2);return (thisValue<thatValue ? -1 : (thisValue==thatValue ? 0 : 1));}}
1.2 输入输出格式
java类名 | 输入/输出 | 功能 |
---|---|---|
org.apache.hadoop.mapreduce.lib.input.TextInputFormat | MapReduce默认的输入格式 | 将输入文件按行分割,每一行作为<key, value>对,其中key是行的偏移量(从0开始),value 是行的内容 |
org.apache.hadoop.mapreduce.lib.output.TextOutputFormat | MapReduce默认的输出格式 | 将输出写成文本文件,每个<key, value>对占一行,key和value之间用制表符(\t)分隔 |
org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat | SequenceFile的输入格式 | 读取Hadoop的二进制文件格式SequenceFile |
org.apache.hadoop.mapreduce.lib.input.SequenceFileOutputFormat | SequenceFile的输出格式 | 将输出写成Hadoop的二进制文件格式SequenceFile |
(Hadoop定义的SequenceFile是一种高效、可分割的二进制文件格式,支持压缩)
(Hadoop定义了好多输入输出格式,由于我没有详细使用,这里就不介绍了)
如果要进行多次MapReduce作业,中间结果可以以SequenceFile的形式存储,加速作业的运行。
1.3 处理流程
首先高级WordCount也要像普通WordCount一样对文本进行计数,因此Reduce函数输入的键值对为<Text,IntWritable>。而最终要求的结果键值对为<IntWritable, Text>,如果把Reduce函数的输出键值对直接变为<IntWritable, Text>并且在该任务中只使用一个作业的话,你会发现无法完成IntWritable降序排列(尽管你可以已经设置SortComparatorClass),那是因为Shuffle过程的排序只会发生在Map结束后Reduce发生前,这时键的类型是Text而非IntWritable。
为了解决这个任务,需要进行两次作业,第一次作业负责计数,并以SequenceFile的格式输出,Map的输出、Reduce的输入和输出均为<Text, IntWritable>,最终文件输出格式选择SequenceFileOutputFormat;第二次作业负责交换键值对,并以SequenceFile的个数读入,然后再对键进行降序排列,这就需要使用Hadoop自带的org.apache.hadoop.mapreduce.lib.map.InverseMapper
,它能交换键值对。这次作业的输入格式选择SequenceFileInputFormat,Map输入和Map输出分别是<Text, IntWritable>、<IntWritable, Text>,这时设置SortComparatorClass就可以实现IntWritable降序排列。
2. 代码和结果
2.1 pom.xml中依赖配置
<dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.11</version><scope>test</scope></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>3.3.6</version><exclusions><exclusion><groupId>org.slf4j</groupId><artifactId>slf4j-log4j12</artifactId></exclusion></exclusions></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-mapreduce-client-core</artifactId><version>3.3.6</version><type>pom</type></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-mapreduce-client-jobclient</artifactId><version>3.3.6</version></dependency></dependencies>
2.2 工具类util
import java.net.URI;
import java.util.regex.Matcher;
import java.util.regex.Pattern;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;public class util {public static FileSystem getFileSystem(String uri, Configuration conf) throws Exception {URI add = new URI(uri);return FileSystem.get(add, conf);}public static void removeALL(String uri, Configuration conf, String path) throws Exception {FileSystem fs = getFileSystem(uri, conf);if (fs.exists(new Path(path))) {boolean isDeleted = fs.delete(new Path(path), true);System.out.println("Delete Output Folder? " + isDeleted);}}public static void removeALL(String uri, Configuration conf, String[] pathList) throws Exception {FileSystem fs = getFileSystem(uri, conf);for (String path : pathList) {if (fs.exists(new Path(path))) {boolean isDeleted = fs.delete(new Path(path), true);System.out.println(String.format("Delete %s? %s", path, isDeleted));}}}public static void showResult(String uri, Configuration conf, String path) throws Exception {FileSystem fs = getFileSystem(uri, conf);String regex = "part-r-";Pattern pattern = Pattern.compile(regex);if (fs.exists(new Path(path))) {FileStatus[] files = fs.listStatus(new Path(path));for (FileStatus file : files) {Matcher matcher = pattern.matcher(file.getPath().toString());if (matcher.find()) {System.out.println(file.getPath() + ":");FSDataInputStream openStream = fs.open(file.getPath());IOUtils.copyBytes(openStream, System.out, 1024);openStream.close();}}}}
}
2.3 高级WordCount
import java.io.IOException;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.map.InverseMapper;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;public class App {public static class IntWritableDecreaseingComparator extends IntWritable.Comparator {@Overridepublic int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {return -super.compare(b1, s1, l1, b2, s2, l2);}}public static class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable> {@Overrideprotected void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException {String[] splitStr = value.toString().split("\\s+");for (String str : splitStr) {context.write(new Text(str), new IntWritable(1));}}}public static class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Context context)throws IOException, InterruptedException {int sum = 0;for (IntWritable val : values) {sum += val.get();}context.write(key, new IntWritable(sum));}}public static void main(String[] args) throws Exception {Configuration conf = new Configuration();String tempPath = "hdfs://localhost:9000/user/developer/Temp";String[] myArgs = {"file:///home/developer/CodeArtsProjects/advanced-word-count/AdvancedWordCount.txt","hdfs://localhost:9000/user/developer/AdvancedWordCount/output"};util.removeALL("hdfs://localhost:9000", conf, new String[] { tempPath, myArgs[myArgs.length - 1] });Job job = Job.getInstance(conf, "AdvancedWordCount");job.setJarByClass(App.class);job.setMapperClass(MyMapper.class);job.setReducerClass(MyReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);job.setOutputFormatClass(SequenceFileOutputFormat.class);job.setNumReduceTasks(2);for (int i = 0; i < myArgs.length - 1; i++) {FileInputFormat.addInputPath(job, new Path(myArgs[i]));}FileOutputFormat.setOutputPath(job, new Path(tempPath));int res1 = job.waitForCompletion(true) ? 0 : 1;if (res1 == 0) {Job sortJob = Job.getInstance(conf, "Sort");sortJob.setJarByClass(App.class);sortJob.setMapperClass(InverseMapper.class);sortJob.setInputFormatClass(SequenceFileInputFormat.class);sortJob.setOutputKeyClass(IntWritable.class);sortJob.setOutputValueClass(Text.class);sortJob.setSortComparatorClass(IntWritableDecreaseingComparator.class);FileInputFormat.addInputPath(sortJob, new Path(tempPath));FileOutputFormat.setOutputPath(sortJob, new Path(myArgs[myArgs.length - 1]));int res2 = sortJob.waitForCompletion(true) ? 0 : 1;if (res2 == 0) {System.out.println("高级WordCount结果为:");util.showResult("hdfs://localhost:9000", conf, myArgs[myArgs.length - 1]);}System.exit(res2);}System.exit(res1);}
}
2.4 结果
结果文件内容如下:
64
14 {
13 }
12 import
8 int
7 public
7 =
4 static
4 class
4 -
4 new
4 @Override
3 for
3 :
3 void
3 throws
3 extends
2 l1,
2 1;
2 0;
2 String[]
2 s2,
2 s1,
2 i
2 context.write(new
2 context)
2 conf,
2 InterruptedException
2 key,
2 IntWritable,
2 return
2 IOException,
2 b2,
2 sum
2 Context
2 protected
2 myArgs[myArgs.length
2 Text,
2 1]);
1 };
1 values,
1 values)
1 value.toString().split("\\s+");
1 value,
1 val.get();
1 val
1 util.showResult("hdfs://localhost:9000",
1 util.removeALL("hdfs://localhost:9000",
1 str
1 splitStr)
1 splitStr
1 res
1 reduce(Text
1 org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
1 org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
1 org.apache.hadoop.mapreduce.Reducer;
1 org.apache.hadoop.mapreduce.Mapper;
1 org.apache.hadoop.mapreduce.Job;
1 org.apache.hadoop.io.WritableComparable;
1 org.apache.hadoop.io.Text;
1 org.apache.hadoop.io.LongWritable;
1 org.apache.hadoop.io.IntWritable;
1 org.apache.hadoop.fs.Path;
1 org.apache.hadoop.conf.Configuration;
1 myArgs.length
1 myArgs
1 map(LongWritable
1 main(String[]
1 l2);
1 l2)
1 key);
1 job.waitForCompletion(true)
1 job.setSortComparatorClass(IntWritableDecreaseingComparator.class);
1 job.setReducerClass(MyReducer.class);
1 job.setOutputValueClass(Text.class);
1 job.setOutputKeyClass(IntWritable.class);
1 job.setMapperClass(MyMapper.class);
1 job.setJarByClass(App.class);
1 job.setCombinerClass(MyReducer.class);
1 job
1 java.io.IOException;
1 if
1 i++)
1 compare(byte[]
1 compare(WritableComparable
1 byte[]
1 b1,
1 b);
1 b)
1 args)
1 a,
1 WritableComparable
1 Text>
1 Text(str),
1 Text
1 System.out.println("高级WordCount结果为:");
1 System.exit(res);
1 Reducer<Text,
1 Path(myArgs[myArgs.length
1 Path(myArgs[i]));
1 MyReducer
1 MyMapper
1 Mapper<LongWritable,
1 Job.getInstance(conf,
1 Job
1 Iterable<IntWritable>
1 IntWritableDecreaseingComparator
1 IntWritable>
1 IntWritable.Comparator
1 IntWritable(sum),
1 IntWritable(1));
1 FileOutputFormat.setOutputPath(job,
1 FileInputFormat.addInputPath(job,
1 Exception
1 Configuration();
1 Configuration
1 App
1 ?
1 ==
1 <
1 1]));
1 0)
1 0
1 -super.compare(b1,
1 -super.compare(a,
1 +=
1 (res
1 (int
1 (String
1 (IntWritable
1 "hdfs://localhost:9000/user/developer/AdvancedWordCount/output"
1 "file:///home/developer/CodeArtsProjects/AdvancedWordCount.txt",
1 "AdvancedWordCount");
1 conf