kaggle视频行为分析1st and Future - Player Contact Detection

这次比赛的目标是检测美式橄榄球NFL比赛中球员经历的外部接触。您将使用视频和球员追踪数据来识别发生接触的时刻,以帮助提高球员的安全。两种接触,一种是人与人的,另一种是人与地面,不包括脚底和地面的,跟我之前做的这个是同一个主办方举行的

kaggle视频追踪NFL Health & Safety - Helmet Assignment-CSDN博客

之前做的是视频追踪,用的deepsort,这一场比赛用的2.5DCNN。

EDA部分

eda可以参考这一个notebook,用的fasteda,挺方便的

NFL Player Contact Detection EDA 🏈 | Kaggle

视频数据在test和train文件夹里面,还提供了这一个train_baseline_helmets.csv,是由上一次比赛的冠军方案产生的,是我之前做的视频追踪,train_player_tracking.csv 的频率是10HZ,视频是59.94HZ,之后要进行转换,snap 事件也就是比赛开始发生在视频的第五秒

train_labels.csv

  • step: A number representing each each timestep for each play, starting at 0 at the moment of the play starting, and incrementing by 1 every 0.1 seconds.
  • 之前说的比赛第5秒开始,一个step是0.1秒

接触发生以10HZ记录

[train/test]_player_tracking.csv

  • datetime: timestamp at 10 Hz.

[train/test]_video_metadata.csv

be used to sync with player tracking data.和视频是同步的

训练部分

我自己租卡跑,20多个小时,10个epoch,我上传到kaggle,链接如下

track_weight | Kaggle

额外要用的一个数据集如下,我用的的4090显卡20核跑的,你要自己训练的话要自己修改一下

timm-0.6.9 | Kaggle

导入包

import os
import sys
import glob
import numpy as np
import pandas as pd
import random
import math
import gc
import cv2
from tqdm import tqdm
import time
from functools import lru_cache
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import Dataset, DataLoader
from torch.cuda.amp import autocast, GradScaler
import timm
import albumentations as A
from albumentations.pytorch import ToTensorV2
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from timm.scheduler import CosineLRScheduler
sys.path.append('../input/timm-0-6-9/pytorch-image-models-master')

配置

CFG = {'seed': 42,'model': 'convnext_small.fb_in1k','img_size': 256,'epochs': 10,'train_bs': 48, 'valid_bs': 32,'lr': 1e-3, 'weight_decay': 1e-6,'num_workers': 20,'max_grad_norm' : 1000,'epochs_warmup' : 3.0
}

我用的convnext,这个网络是原本的cnn根据vit模型去反复修改的,有兴趣自己去找论文看,但论文也就是在那反复调

设置种子和device

def seed_everything(seed):random.seed(seed)os.environ['PYTHONHASHSEED'] = str(seed)np.random.seed(seed)torch.manual_seed(seed)torch.cuda.manual_seed(seed)torch.cuda.manual_seed_all(seed)torch.backends.cudnn.deterministic = Truetorch.backends.cudnn.benchmark = Falseseed_everything(CFG['seed'])
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

添加一些额外的列和读取数据

def expand_contact_id(df):"""Splits out contact_id into seperate columns."""df["game_play"] = df["contact_id"].str[:12]df["step"] = df["contact_id"].str.split("_").str[-3].astype("int")df["nfl_player_id_1"] = df["contact_id"].str.split("_").str[-2]df["nfl_player_id_2"] = df["contact_id"].str.split("_").str[-1]return df
labels = expand_contact_id(pd.read_csv("../input/nfl-player-contact-detection/train_labels.csv"))
train_tracking = pd.read_csv("../input/nfl-player-contact-detection/train_player_tracking.csv")
train_helmets = pd.read_csv("../input/nfl-player-contact-detection/train_baseline_helmets.csv")
train_video_metadata = pd.read_csv("../input/nfl-player-contact-detection/train_video_metadata.csv")

将视频数据转化为图像数据

import subprocess
from tqdm import tqdm# 假设 train_helmets 是一个包含视频文件名的 DataFrame
for video in tqdm(train_helmets.video.unique()):if 'Endzone2' not in video:# 输入视频路径input_path = f'/openbayes/home/train/{video}'# 输出帧路径output_path = f'/openbayes/train/frames/{video}_%04d.jpg'# 构建 ffmpeg 命令command = ['ffmpeg','-i', input_path,  # 输入视频文件'-q:v', '5',       # 设置输出图像质量'-f', 'image2',    # 输出为图像序列output_path,       # 输出图像路径'-hide_banner',    # 隐藏 ffmpeg 的 banner 信息'-loglevel', 'error'  # 只显示错误日志]# 执行命令subprocess.run(command, check=True)

可以自己修改那里的质量,在kaggle上不能训练,要你自己租卡才跑的动

创建一些特征

def create_features(df, tr_tracking, merge_col="step", use_cols=["x_position", "y_position"]):output_cols = []df_combo = (df.astype({"nfl_player_id_1": "str"}).merge(tr_tracking.astype({"nfl_player_id": "str"})[["game_play", merge_col, "nfl_player_id",] + use_cols],left_on=["game_play", merge_col, "nfl_player_id_1"],right_on=["game_play", merge_col, "nfl_player_id"],how="left",).rename(columns={c: c+"_1" for c in use_cols}).drop("nfl_player_id", axis=1).merge(tr_tracking.astype({"nfl_player_id": "str"})[["game_play", merge_col, "nfl_player_id"] + use_cols],left_on=["game_play", merge_col, "nfl_player_id_2"],right_on=["game_play", merge_col, "nfl_player_id"],how="left",).drop("nfl_player_id", axis=1).rename(columns={c: c+"_2" for c in use_cols}).sort_values(["game_play", merge_col, "nfl_player_id_1", "nfl_player_id_2"]).reset_index(drop=True))output_cols += [c+"_1" for c in use_cols]output_cols += [c+"_2" for c in use_cols]if ("x_position" in use_cols) & ("y_position" in use_cols):index = df_combo['x_position_2'].notnull()distance_arr = np.full(len(index), np.nan)tmp_distance_arr = np.sqrt(np.square(df_combo.loc[index, "x_position_1"] - df_combo.loc[index, "x_position_2"])+ np.square(df_combo.loc[index, "y_position_1"]- df_combo.loc[index, "y_position_2"]))distance_arr[index] = tmp_distance_arrdf_combo['distance'] = distance_arroutput_cols += ["distance"]df_combo['G_flug'] = (df_combo['nfl_player_id_2']=="G")output_cols += ["G_flug"]return df_combo, output_colsuse_cols = ['x_position', 'y_position', 'speed', 'distance','direction', 'orientation', 'acceleration', 'sa'
]train, feature_cols = create_features(labels, train_tracking, use_cols=use_cols)

label和train_tracking进行合并,这里的feature_cols后面训练要用到

和视频的频率进行同步,过滤一部分数据

train_filtered = train.query('not distance>2').reset_index(drop=True)
train_filtered['frame'] = (train_filtered['step']/10*59.94+5*59.94).astype('int')+1
train_filtered.head()

视频频率是59.94,而数据集是10,这里将距离过大的pair去除

数据增强

train_aug = A.Compose([A.HorizontalFlip(p=0.5),A.ShiftScaleRotate(p=0.5),A.RandomBrightnessContrast(brightness_limit=(-0.1, 0.1), contrast_limit=(-0.1, 0.1), p=0.5),A.Normalize(mean=[0.], std=[1.]),ToTensorV2()
])valid_aug = A.Compose([A.Normalize(mean=[0.], std=[1.]),ToTensorV2()
])

创建字典

video2helmets = {}
train_helmets_new = train_helmets.set_index('video')
for video in tqdm(train_helmets.video.unique()):video2helmets[video] = train_helmets_new.loc[video].reset_index(drop=True)
video2frames = {}for game_play in tqdm(train_video_metadata.game_play.unique()):for view in ['Endzone', 'Sideline']:video = game_play + f'_{view}.mp4'video2frames[video] = max(list(map(lambda x:int(x.split('_')[-1].split('.')[0]), \glob.glob(f'../train/frames/{video}*'))))

取出视频对应的检测数据和每个视频的最大帧数,检测数据后面用来截取图像用的,最大帧数确保抽取的帧不超过这个范围

数据集

class MyDataset(Dataset):def __init__(self, df, aug=train_aug, mode='train'):self.df = dfself.frame = df.frame.valuesself.feature = df[feature_cols].fillna(-1).valuesself.players = df[['nfl_player_id_1','nfl_player_id_2']].valuesself.game_play = df.game_play.valuesself.aug = augself.mode = modedef __len__(self):return len(self.df)# @lru_cache(1024)# def read_img(self, path):#     return cv2.imread(path, 0)def __getitem__(self, idx):   window = 24frame = self.frame[idx]if self.mode == 'train':frame = frame + random.randint(-6, 6)players = []for p in self.players[idx]:if p == 'G':players.append(p)else:players.append(int(p))imgs = []for view in ['Endzone', 'Sideline']:video = self.game_play[idx] + f'_{view}.mp4'tmp = video2helmets[video]
#             tmp = tmp.query('@frame-@window<=frame<=@frame+@window')tmp[tmp['frame'].between(frame-window, frame+window)]tmp = tmp[tmp.nfl_player_id.isin(players)]#.sort_values(['nfl_player_id', 'frame'])tmp_frames = tmp.frame.valuestmp = tmp.groupby('frame')[['left','width','top','height']].mean()
#0.002sbboxes = []for f in range(frame-window, frame+window+1, 1):if f in tmp_frames:x, w, y, h = tmp.loc[f][['left','width','top','height']]bboxes.append([x, w, y, h])else:bboxes.append([np.nan, np.nan, np.nan, np.nan])bboxes = pd.DataFrame(bboxes).interpolate(limit_direction='both').valuesbboxes = bboxes[::4]if bboxes.sum() > 0:flag = 1else:flag = 0
#0.03sfor i, f in enumerate(range(frame-window, frame+window+1, 4)):img_new = np.zeros((256, 256), dtype=np.float32)if flag == 1 and f <= video2frames[video]:img = cv2.imread(f'../train/frames/{video}_{f:04d}.jpg', 0)x, w, y, h = bboxes[i]img = img[int(y+h/2)-128:int(y+h/2)+128,int(x+w/2)-128:int(x+w/2)+128].copy()img_new[:img.shape[0], :img.shape[1]] = imgimgs.append(img_new)
#0.06sfeature = np.float32(self.feature[idx])img = np.array(imgs).transpose(1, 2, 0)    img = self.aug(image=img)["image"]label = np.float32(self.df.contact.values[idx])return img, feature, label

模型

class Model(nn.Module):def __init__(self):super(Model, self).__init__()self.backbone = timm.create_model(CFG['model'], pretrained=True, num_classes=500, in_chans=13)self.mlp = nn.Sequential(nn.Linear(18, 64),nn.LayerNorm(64),nn.ReLU(),nn.Dropout(0.2),)self.fc = nn.Linear(64+500*2, 1)def forward(self, img, feature):b, c, h, w = img.shapeimg = img.reshape(b*2, c//2, h, w)img = self.backbone(img).reshape(b, -1)feature = self.mlp(feature)y = self.fc(torch.cat([img, feature], dim=1))return y

这里len(feature_cols)是18,所以mlp输入是18,在上面

            for i, f in enumerate(range(frame-window, frame+window+1, 4)):img_new = np.zeros((256, 256), dtype=np.float32)if flag == 1 and f <= video2frames[video]:img = cv2.imread(f'/openbayes/train/frames/{video}_{f:04d}.jpg', 0)x, w, y, h = bboxes[i]img = img[int(y+h/2)-128:int(y+h/2)+128,int(x+w/2)-128:int(x+w/2)+128].copy()img_new[:img.shape[0], :img.shape[1]] = imgimgs.append(img_new)

进行了抽帧,每个视角抽了13帧,两个视角,总计26帧,所以输入通道26,跟之前的比赛一样,也是提供两个视角

for view in ['Endzone', 'Sideline']:

损失函数

model = Model()
model.to(device)
model.train()
import torch.nn as nn
criterion = nn.BCEWithLogitsLoss()

这里用的交叉熵

评估指标

def evaluate(model, loader_val, *, compute_score=True, pbar=None):"""Predict and compute loss and score"""tb = time.time()in_training = model.trainingmodel.eval()loss_sum = 0.0n_sum = 0y_all = []y_pred_all = []if pbar is not None:pbar = tqdm(desc='Predict', nrows=78, total=pbar)total= len(loader_val)for ibatch,(img, feature, label) in tqdm(enumerate(loader_val),total = total):# img, feature, label = [x.to(device) for x in batch]img = img.to(device)feature = feature.to(device)n = label.size(0)label = label.to(device)with torch.no_grad():y_pred = model(img, feature)loss = criterion(y_pred.view(-1), label)n_sum += nloss_sum += n * loss.item()if pbar is not None:pbar.update(len(img))del loss, img, labelgc.collect()loss_val = loss_sum / n_sumret = {'loss': loss_val,'time': time.time() - tb}model.train(in_training) gc.collect()return ret

载入数据,设置学习率计划和优化器

train_set,valid_set = train_test_split(train_filtered,test_size=0.05, random_state=42,stratify = train_filtered['contact'])
train_set = MyDataset(train_set, train_aug, 'train')
train_loader = DataLoader(train_set, batch_size=CFG['train_bs'], shuffle=True, num_workers=12, pin_memory=True,drop_last=True)
valid_set = MyDataset(valid_set, valid_aug, 'test')
valid_loader = DataLoader(valid_set, batch_size=CFG['valid_bs'], shuffle=False, num_workers=12, pin_memory=True)
optimizer = torch.optim.AdamW(model.parameters(), lr=CFG['lr'], weight_decay=CFG['weight_decay'])
nbatch = len(train_loader)
warmup = CFG['epochs_warmup'] * nbatch
nsteps = CFG['epochs'] * nbatch 
scheduler = CosineLRScheduler(optimizer,warmup_t=warmup, warmup_lr_init=0.0, warmup_prefix=True,t_initial=(nsteps - warmup), lr_min=1e-6)    

开始训练,这里保存整个模型

for iepoch in range(CFG['epochs']):print('Epoch:', iepoch+1)loss_sum = 0.0n_sum = 0total = len(train_loader)# Trainfor ibatch,(img, feature, label) in tqdm(enumerate(train_loader),total = total):img = img.to(device)feature = feature.to(device)n = label.size(0)label = label.to(device)optimizer.zero_grad()y_pred = model(img, feature).squeeze(-1)loss = criterion(y_pred, label)loss_train = loss.item()loss_sum += n * loss_trainn_sum += nloss.backward()grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(),CFG['max_grad_norm'])optimizer.step()scheduler.step(iepoch * nbatch + ibatch + 1)val = evaluate(model, valid_loader)time_val += val['time']loss_train = loss_sum / n_sumdt = (time.time() - tb) / 60print('Epoch: %d Train Loss: %.4f Test Loss: %.4f Time: %.2f min' %(iepoch + 1, loss_train, val['loss'],dt))if val['loss'] < best_loss:best_loss = val['loss']# Save modelofilename = '/openbayes/home/best_model.pt'torch.save(model, ofilename)print(ofilename, 'written')del valgc.collect()dt = time.time() - tb
print(' %.2f min total, %.2f min val' % (dt / 60, time_val / 60))
gc.collect()

只保留权重可能会出现一些bug,保留整个模型比较稳妥

推理部分

这里我用TTA的版本

导入包

import os
import sys
sys.path.append('/kaggle/input/timm-0-6-9/pytorch-image-models-master')
import glob
import numpy as np
import pandas as pd
import random
import math
import gc
import cv2
from tqdm import tqdm
import time
from functools import lru_cache
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import Dataset, DataLoader
from torch.cuda.amp import autocast, GradScaler
import timm
import albumentations as A
from albumentations.pytorch import ToTensorV2
import matplotlib.pyplot as plt
from sklearn.metrics import matthews_corrcoef

数据处理

这里基本和前面一样,我全部放一起了

CFG = {'seed': 42,'model': 'convnext_small.fb_in1k','img_size': 256,'epochs': 10,'train_bs': 100, 'valid_bs': 64,'lr': 1e-3, 'weight_decay': 1e-6,'num_workers': 4
}
def seed_everything(seed):random.seed(seed)os.environ['PYTHONHASHSEED'] = str(seed)np.random.seed(seed)torch.manual_seed(seed)torch.cuda.manual_seed(seed)torch.cuda.manual_seed_all(seed)torch.backends.cudnn.deterministic = Truetorch.backends.cudnn.benchmark = Falseseed_everything(CFG['seed'])
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def expand_contact_id(df):"""Splits out contact_id into seperate columns."""df["game_play"] = df["contact_id"].str[:12]df["step"] = df["contact_id"].str.split("_").str[-3].astype("int")df["nfl_player_id_1"] = df["contact_id"].str.split("_").str[-2]df["nfl_player_id_2"] = df["contact_id"].str.split("_").str[-1]return dflabels = expand_contact_id(pd.read_csv("/kaggle/input/nfl-player-contact-detection/sample_submission.csv"))test_tracking = pd.read_csv("/kaggle/input/nfl-player-contact-detection/test_player_tracking.csv")test_helmets = pd.read_csv("/kaggle/input/nfl-player-contact-detection/test_baseline_helmets.csv")test_video_metadata = pd.read_csv("/kaggle/input/nfl-player-contact-detection/test_video_metadata.csv")
!mkdir -p ../work/framesfor video in tqdm(test_helmets.video.unique()):if 'Endzone2' not in video:!ffmpeg -i /kaggle/input/nfl-player-contact-detection/test/{video} -q:v 2 -f image2 /kaggle/work/frames/{video}_%04d.jpg -hide_banner -loglevel error
def create_features(df, tr_tracking, merge_col="step", use_cols=["x_position", "y_position"]):output_cols = []df_combo = (df.astype({"nfl_player_id_1": "str"}).merge(tr_tracking.astype({"nfl_player_id": "str"})[["game_play", merge_col, "nfl_player_id",] + use_cols],left_on=["game_play", merge_col, "nfl_player_id_1"],right_on=["game_play", merge_col, "nfl_player_id"],how="left",).rename(columns={c: c+"_1" for c in use_cols}).drop("nfl_player_id", axis=1).merge(tr_tracking.astype({"nfl_player_id": "str"})[["game_play", merge_col, "nfl_player_id"] + use_cols],left_on=["game_play", merge_col, "nfl_player_id_2"],right_on=["game_play", merge_col, "nfl_player_id"],how="left",).drop("nfl_player_id", axis=1).rename(columns={c: c+"_2" for c in use_cols}).sort_values(["game_play", merge_col, "nfl_player_id_1", "nfl_player_id_2"]).reset_index(drop=True))output_cols += [c+"_1" for c in use_cols]output_cols += [c+"_2" for c in use_cols]if ("x_position" in use_cols) & ("y_position" in use_cols):index = df_combo['x_position_2'].notnull()distance_arr = np.full(len(index), np.nan)tmp_distance_arr = np.sqrt(np.square(df_combo.loc[index, "x_position_1"] - df_combo.loc[index, "x_position_2"])+ np.square(df_combo.loc[index, "y_position_1"]- df_combo.loc[index, "y_position_2"]))distance_arr[index] = tmp_distance_arrdf_combo['distance'] = distance_arroutput_cols += ["distance"]df_combo['G_flug'] = (df_combo['nfl_player_id_2']=="G")output_cols += ["G_flug"]return df_combo, output_colsuse_cols = ['x_position', 'y_position', 'speed', 'distance','direction', 'orientation', 'acceleration', 'sa'
]test, feature_cols = create_features(labels, test_tracking, use_cols=use_cols)
test
test_filtered = test.query('not distance>2').reset_index(drop=True)
test_filtered['frame'] = (test_filtered['step']/10*59.94+5*59.94).astype('int')+1
test_filtered
del test, labels, test_tracking
gc.collect()
train_aug = A.Compose([A.HorizontalFlip(p=0.5),A.ShiftScaleRotate(p=0.5),A.RandomBrightnessContrast(brightness_limit=(-0.1, 0.1), contrast_limit=(-0.1, 0.1), p=0.5),A.Normalize(mean=[0.], std=[1.]),ToTensorV2()
])valid_aug = A.Compose([A.Normalize(mean=[0.], std=[1.]),ToTensorV2()
])
video2helmets = {}
test_helmets_new = test_helmets.set_index('video')
for video in tqdm(test_helmets.video.unique()):video2helmets[video] = test_helmets_new.loc[video].reset_index(drop=True)del test_helmets, test_helmets_new
gc.collect()
video2frames = {}for game_play in tqdm(test_video_metadata.game_play.unique()):for view in ['Endzone', 'Sideline']:video = game_play + f'_{view}.mp4'video2frames[video] = max(list(map(lambda x:int(x.split('_')[-1].split('.')[0]), \glob.glob(f'/kaggle/work/frames/{video}*'))))
class MyDataset(Dataset):def __init__(self, df, aug=valid_aug, mode='train'):self.df = dfself.frame = df.frame.valuesself.feature = df[feature_cols].fillna(-1).valuesself.players = df[['nfl_player_id_1','nfl_player_id_2']].valuesself.game_play = df.game_play.valuesself.aug = augself.mode = modedef __len__(self):return len(self.df)# @lru_cache(1024)# def read_img(self, path):#     return cv2.imread(path, 0)def __getitem__(self, idx):   window = 24frame = self.frame[idx]if self.mode == 'train':frame = frame + random.randint(-6, 6)players = []for p in self.players[idx]:if p == 'G':players.append(p)else:players.append(int(p))imgs = []for view in ['Endzone', 'Sideline']:video = self.game_play[idx] + f'_{view}.mp4'tmp = video2helmets[video]
#             tmp = tmp.query('@frame-@window<=frame<=@frame+@window')tmp[tmp['frame'].between(frame-window, frame+window)]tmp = tmp[tmp.nfl_player_id.isin(players)]#.sort_values(['nfl_player_id', 'frame'])tmp_frames = tmp.frame.valuestmp = tmp.groupby('frame')[['left','width','top','height']].mean()
#0.002sbboxes = []for f in range(frame-window, frame+window+1, 1):if f in tmp_frames:x, w, y, h = tmp.loc[f][['left','width','top','height']]bboxes.append([x, w, y, h])else:bboxes.append([np.nan, np.nan, np.nan, np.nan])bboxes = pd.DataFrame(bboxes).interpolate(limit_direction='both').valuesbboxes = bboxes[::4]if bboxes.sum() > 0:flag = 1else:flag = 0
#0.03sfor i, f in enumerate(range(frame-window, frame+window+1, 4)):img_new = np.zeros((256, 256), dtype=np.float32)if flag == 1 and f <= video2frames[video]:img = cv2.imread(f'/kaggle/work/frames/{video}_{f:04d}.jpg', 0)x, w, y, h = bboxes[i]img = img[int(y+h/2)-128:int(y+h/2)+128,int(x+w/2)-128:int(x+w/2)+128].copy()img_new[:img.shape[0], :img.shape[1]] = imgimgs.append(img_new)
#0.06sfeature = np.float32(self.feature[idx])img = np.array(imgs).transpose(1, 2, 0)    img = self.aug(image=img)["image"]label = np.float32(self.df.contact.values[idx])return img, feature, label

查看截取出来的图片

img, feature, label = MyDataset(test_filtered, valid_aug, 'test')[0]
plt.imshow(img.permute(1,2,0)[:,:,7])
plt.show()
img.shape, feature, label

进行推理

class Model(nn.Module):def __init__(self):super(Model, self).__init__()self.backbone = timm.create_model(CFG['model'], pretrained=False, num_classes=500, in_chans=13)self.mlp = nn.Sequential(nn.Linear(18, 64),nn.LayerNorm(64),nn.ReLU(),nn.Dropout(0.2),# nn.Linear(64, 64),# nn.LayerNorm(64),# nn.ReLU(),# nn.Dropout(0.2))self.fc = nn.Linear(64+500*2, 1)def forward(self, img, feature):b, c, h, w = img.shapeimg = img.reshape(b*2, c//2, h, w)img = self.backbone(img).reshape(b, -1)feature = self.mlp(feature)y = self.fc(torch.cat([img, feature], dim=1))return y
test_set = MyDataset(test_filtered, valid_aug, 'test')
test_loader = DataLoader(test_set, batch_size=CFG['valid_bs'], shuffle=False, num_workers=CFG['num_workers'], pin_memory=True)model = Model().to(device)
model = torch.load('/kaggle/input/track-weight/best_model.pt')model.eval()y_pred = []
with torch.no_grad():tk = tqdm(test_loader, total=len(test_loader))for step, batch in enumerate(tk):if(step % 4 != 3):img, feature, label = [x.to(device) for x in batch]output1 = model(img, feature).squeeze(-1)output2 = model(img.flip(-1), feature).squeeze(-1)y_pred.extend(0.2*(output1.sigmoid().cpu().numpy()) + 0.8*(output2.sigmoid().cpu().numpy()))else:img, feature, label = [x.to(device) for x in batch]output = model(img.flip(-1), feature).squeeze(-1)y_pred.extend(output.sigmoid().cpu().numpy())    y_pred = np.array(y_pred)

这里用了翻转,tta算是一种隐式模型集成

提交

th = 0.29test_filtered['contact'] = (y_pred >= th).astype('int')sub = pd.read_csv('/kaggle/input/nfl-player-contact-detection/sample_submission.csv')sub = sub.drop("contact", axis=1).merge(test_filtered[['contact_id', 'contact']], how='left', on='contact_id')
sub['contact'] = sub['contact'].fillna(0).astype('int')sub[["contact_id", "contact"]].to_csv("submission.csv", index=False)sub.head()

推理代码链接和成绩

infer_code | Kaggle

修改版本

之前的,效果不是很好,我还是换成resnet50进行训练,结果如下,链接和权重如下

infer_code | Kaggle

best_weight | Kaggle

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/894896.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Sentinel的安装和做限流的使用

一、安装 Release v1.8.3 alibaba/Sentinel GitHubA powerful flow control component enabling reliability, resilience and monitoring for microservices. (面向云原生微服务的高可用流控防护组件) - Release v1.8.3 alibaba/Sentinelhttps://github.com/alibaba/Senti…

“AI隐患识别系统,安全多了道“智能护盾”

家人们&#xff0c;在生活和工作里&#xff0c;咱们都知道安全那可是头等大事。不管是走在马路上&#xff0c;还是在工厂车间忙碌&#xff0c;又或是住在高楼大厦里&#xff0c;身边都可能藏着一些安全隐患。以前&#xff0c;发现这些隐患大多靠咱们的眼睛和经验&#xff0c;可…

基于DeepSeek API和VSCode的自动化网页生成流程

1.创建API key 访问官网DeepSeek &#xff0c;点击API开放平台。 在开放平台界面左侧点击API keys&#xff0c;进入API keys管理界面&#xff0c;点击创建API key按钮创建API key&#xff0c;名称自定义。 2.下载并安装配置编辑器VSCode 官网Visual Studio Code - Code Editing…

SolidWorks教程P2.2【草图 | 第二节】——草图几何关系与编辑

草图几何关系包括&#xff1a;重合、中点、相切、平行、相等、共线、对称 草图编辑功能包括&#xff1a;裁剪实体、转换实体引用、等距实体 目录 1.草图几何关系 2.裁剪实体 3.转换实体引用 4.等距实体 补充知识&#xff1a;智能尺寸 1.草图几何关系 在之前的草图介绍里…

WARNING(ORCAP-1589): Net has two or more aliases - possible short?

参考链接&#xff1a;ORCAD报错ORCAP-1589-CSDN博客 现象&#xff1a; Capture CIS 使用PCB-DRC检查原理图&#xff0c;报错Net has two or more aliases - possible short? 错误原因&#xff1a; 一个网络有两个网络名称。 问题本质&#xff1a; 原理图管脚型号的设定问题…

nvm:node 版本管理器

一、先安装git Git 安装完成后执行 git --version查看版本号是否安装成功 二、安装nvm &#xff08;参考链接&#xff1a;mac 安装nvm详细教程 - 简书&#xff09; 官网&#xff08;https://github.com/nvm-sh/nvm/blob/master/README.md&#xff09;查看最新版本安装命令 …

动态规划——路径问题①

文章目录 62. 不同路径算法原理代码实现 63. 不同路径 II算法原理代码实现 LCR 166. 珠宝的最高价值算法原理代码实现 62. 不同路径 题目链接&#xff1a;62. 不同路径 算法原理 状态表示&#xff1a; dp[i,j]&#xff1a;以[i, j]位置为结尾&#xff0c;走到[i, j]位置有多少…

汽车智能座舱的技术演进与用户体验重构 —— 基于多模态交互与 AI 融合的范式创新

摘要&#xff1a; 汽车智能座舱作为人 - 车 - 环境交互的核心载体&#xff0c;正经历从功能驱动到体验驱动的范式变革。本文通过技术解构与用户行为分析&#xff0c;深入揭示智能座舱在异构计算、多模态感知、服务生态等维度的创新路径。研究表明&#xff0c;智能座舱的竞争焦…

SpringBoot3整合Swagger3时出现Type javax.servlet.http.HttpServletRequest not present错误

目录 错误详情 错误原因 解决方法 引入依赖 修改配置信息 创建文件 访问 错误详情 错误原因 SpringBoot3和Swagger3版本不匹配 解决方法 使用springdoc替代springfox&#xff0c;具体步骤如下&#xff1a; 引入依赖 在pom.xml文件中添加如下依赖&#xff1a; <…

ChatGPT提问技巧:行业热门应用提示词案例-文案写作

ChatGPT 作为强大的 AI 语言模型&#xff0c;已经成为文案写作的得力助手。但要让它写出真正符合你需求的文案&#xff0c;关键在于如何与它“沟通”&#xff0c;也就是如何设计提示词&#xff08;Prompt&#xff09;。以下是一些实用的提示词案例&#xff0c;帮助你解锁 ChatG…

mysql的cpu使用率100%问题排查

背景 线上mysql服务器经常性出现cpu使用率100%的告警&#xff0c; 因此整理一下排查该问题的常规流程。 1. 确认CPU占用来源 检查系统进程 使用 top 或 htop 命令&#xff0c;确认是否是 mysqld 进程导致CPU满载&#xff1a;top -c -p $(pgrep mysqld)2. 实时分析MySQL活动 …

使用jmeter进行压力测试

使用jmeter进行压力测试 jmeter安装 官网安装包下载&#xff0c;选择二进制文件&#xff0c;解压。 tar -xzvf apache-jmeter-x.tgz依赖jdk安装。 yum install java-1.8.0-openjdk环境变量配置&#xff0c;修改/etc/profile文件&#xff0c;添加以下内容。 export JMETER/…

【蓝桥杯嵌入式】6_定时器输入捕获

全部代码网盘自取 链接&#xff1a;https://pan.baidu.com/s/1PX2NCQxnADxYBQx5CsOgPA?pwd3ii2 提取码&#xff1a;3ii2 这是两个信号发生器&#xff0c;可以通过调节板上的两个电位器R39和R40调节输出频率。 将PB4、PA15选择ch1&#xff0c;两个信号发生器只能选择TIM3和TIM…

详解SQLAlchemy的函数relationship

在 SQLAlchemy 中&#xff0c;relationship 是一个非常重要的函数&#xff0c;用于定义模型之间的关系。它用于在 ORM 层面上表示数据库表之间的关联关系&#xff08;如 1 对 1、1 对多和多对多&#xff09;。relationship 的主要作用是提供一个高级接口&#xff0c;用于在模型…

iOS 音频录制、播放与格式转换

iOS 音频录制、播放与格式转换:基于 AVFoundation 和 FFmpegKit 的实现 在 iOS 开发中,音频处理是一个非常常见的需求,比如录音、播放音频、音频格式转换等。本文将详细解读一段基于 AVFoundation 和 FFmpegKit 的代码,展示如何实现音频录制、播放以及 PCM 和 AAC 格式之间…

数据结构与算法(test1)

一、树和二叉树 1. 看图&#xff0c;完成以下填空 (1).树的度为________。 (2).树中结点的最大层次&#xff0c;称为树的_____或树的______&#xff0c;值是______。 (3).结点A和B的度分别为________ 和 ________。 (4).结点A是结点B的________。 (5).结点B是结点A的________…

新版AndroidStudio 修改 jdk版本

一、问题 之前&#xff0c;在安卓项目中配置JDK和Gradle的过程非常直观&#xff0c;只需要进入Android Studio的File菜单中的Project Structure即可进行设置&#xff0c;十分方便。 如下图可以在这修改JDK: 但是升级AndroidStudio之后&#xff0c;比如我升级到了Android Stu…

cursor 开发java项目教程简单上手

1.官网下载 Cursor - The AI Code Editor 下载完后注册账号&#xff0c;可以使用无限邮的方式 注册完之后 设置中文 可以选择设置为中文 Ctrl Shift X 进入设置页面输入chinese 然后重启 更改jdk跟maven仓库设置 ctrlshiftp 打开输入框后输入json&#xff0c;把下面代码…

安装和使用 Ollama(实验环境windows)

下载安装 下载 https://ollama.com/download/windows 安装 Windows 安装 如果直接双击 OllamaSetup.exe 安装&#xff0c;默认会安装到 C 盘&#xff0c;如果需要指定安装目录&#xff0c;需要通过命令行指定安装地址&#xff0c;如下&#xff1a; # 切换到安装目录 C:\Use…

LQB(0)-python-基础知识

一、Python开发环境与基础知识 python解释器&#xff1a;用于解释python代码 方式&#xff1a; 1.直接安装python解释器 2.安装Anaconda管理python环境 python开发环境&#xff1a;用于编写python代码 1.vscode 2.pycharm # 3.安装Anaconda后可以使用网页版的jupyter n…