堆(Heap)的原理与C++实现

1. 什么是堆?

堆(Heap)是一种特殊的树形数据结构,通常用于实现优先队列。堆可以分为两种类型:

  • 最大堆(Max Heap):每个节点的值都大于或等于其子节点的值。
  • 最小堆(Min Heap):每个节点的值都小于或等于其子节点的值。

堆通常是一个完全二叉树,这意味着除了最后一层,其他层都是完全填满的,并且最后一层的节点都尽可能地靠左排列。

2. 堆的性质

  • 完全二叉树:堆是一个完全二叉树,这意味着它可以用数组来高效地表示。
  • 堆序性质:在最大堆中,父节点的值总是大于或等于其子节点的值;在最小堆中,父节点的值总是小于或等于其子节点的值。

Tips: 堆是完全二叉树,并非二叉搜索树

在数据结构中,完全二叉树二叉搜索树是两种常见的树形结构,它们虽然都属于二叉树的范畴,但在定义、性质和应用场景上有显著的区别。下面我们将详细分析它们的区别。

特性完全二叉树二叉搜索树
定义节点从上到下、从左到右依次填充左子树 < 根节点 < 右子树
有序性不一定有序中序遍历结果有序
结构要求必须是完全填充的(最后一层靠左)无特殊结构要求,只需满足有序性
查找效率不支持高效查找支持高效查找(平衡时 O(log n))
插入和删除通常用于堆操作,不支持动态插入删除支持动态插入和删除
应用场景堆、优先队列查找、排序、数据库索引
数组表示可以用数组高效表示通常用指针或引用表示

完全二叉树示例

        10/  \5    15/ \   /2   7 12
  • 节点从上到下、从左到右依次填充。
  • 最后一层的节点靠左排列。

二叉搜索树示例

        10/  \5    15/ \   / \2   7 12 20
  • 左子树的所有节点值小于根节点,右子树的所有节点值大于根节点。
  • 中序遍历结果为 [2, 5, 7, 10, 12, 15, 20],是一个有序序列。

3. 堆的操作

堆的主要操作包括:

  • 插入(Insert):将一个新元素插入堆中,并保持堆的性质。
  • 删除(Delete):删除元素,并保持堆的性质。
  • 查询(Query):查询堆顶元素
  • 构建堆(Build Heap):将一个无序数组构建成一个堆。

4. 堆的实现

堆通常使用数组来实现。在从数组下标0开始存储的堆,对于一个索引为 i 的节点:

  • 其父节点的索引为 (i - 1) / 2
  • 其左子节点的索引为 2 * i + 1
  • 其右子节点的索引为 2 * i + 2

4.1 堆的性质维护

堆的插入过程

假设我们有一个最大堆,初始堆为:[100, 19, 36, 17, 3, 25, 1, 2, 7],其对应的完全二叉树结构如下(用数组表示):

        100/     \19       36/  \     /  \17   3   25   1/ \
2  7

插入一个新元素40
将新元素添加到堆的末尾:堆的数组表示为 [100, 19, 36, 17, 3, 25, 1, 2, 7, 40],对应的完全二叉树结构如下:

     100/      \19      36/   \    / \17    3  25  1
/ \    /
2  7  40
  1. 向上调整(上浮):从新插入的节点开始,与其父节点比较。如果当前节点的值大于父节点的值,则交换它们的位置。
  • 40 的父节点是 3,40 > 3,交换它们的位置:
        100/      \19       36/  \     /  \17   40  25   1/ \   /2  7  3
  • 40 的新父节点是 19,40 > 19,交换它们的位置:
      100/      \40       36/  \     /  \
17   19  25   1
/ \   /
2  7 3
  • 40 的新父节点是 100,40 < 100,停止调整。
  • 最终,插入 40 后的堆为:[100, 40, 36, 17, 19, 25, 1, 2, 7, 3]

总结:堆在插入元素后,需要进行上浮(up)操作,是不断与父节点比较,若父节点小于当前节点,则交换位置。具体代码实现示例如下:

//存储下标从1开始,以大根堆为例
void heap_up(int idx){while(idx != 1){int parent = idx >> 1;if(heap[parent] < heap[idx]){swap(heap[parent], heap[idx]);idx = parent;}else{break;}}
}
堆的删除过程

假设我们从上述堆中删除最大值(堆顶元素 100)。

  1. 将堆顶元素与最后一个元素交换:交换 100 和 3 的位置,得到 [3, 40, 36, 17, 19, 25, 1, 2, 7, 100],然后删除最后一个元素(100),得到 [3, 40, 36, 17, 19, 25, 1, 2, 7]。这是因为我们在用数组存储堆的时候,头部元素的删除面临整个数组的移动,相当消耗计算资源,于是我们选择将头部元素和尾部元素进行交换,进行删除尾部,再调整堆
  2. 向下调整(下沉):从堆顶开始,比较当前节点与其子节点的值,将当前节点与较大的子节点交换,直到满足堆的性质。
  • 当前堆顶是 3,其子节点是 40 和 36,40 > 36,选择 40 与 3 交换得到:
      40/      \3       36/  \     /  \
17   19  25   1
/ \  
2  7 
  • 3 的新位置是左子树的根,其子节点是 17 和 19,19 > 17,选择 19 与 3 交换:
      40/      \19       36/  \     /  \
17   3  25   1
/ \  
2  7 
  • 最终,删除 100 后的堆为:[40, 19, 36, 17, 3, 25, 1, 2, 7]
void heap_down(int idx){int size = top;while(1){int leftChild = idx * 2;int rightChild = idx * 2 + 1;int largest = idx;if(leftChild < size && heap[largest] < heap[leftChild]){largest = leftChild;}if(rightChild < size && heap[largest] < heap[rightChild]){largest = rightChild;}if (largest != idx) {swap(heap[idx], heap[largest]);idx = largest;} else {break;}}
}

4.2 C++ 实现最大堆

这里展示一个封装成对象的大根堆

#include <iostream>
#include <vector>
#include <algorithm>class MaxHeap {
private:std::vector<int> heap;void heapifyUp(int index) {while (index > 0) {int parentIndex = (index - 1) / 2;if (heap[index] > heap[parentIndex]) {std::swap(heap[index], heap[parentIndex]);index = parentIndex;} else {break;}}}void heapifyDown(int index) {int size = heap.size();while (true) {int leftChild = 2 * index + 1;int rightChild = 2 * index + 2;int largest = index;if (leftChild < size && heap[leftChild] > heap[largest]) {largest = leftChild;}if (rightChild < size && heap[rightChild] > heap[largest]) {largest = rightChild;}if (largest != index) {std::swap(heap[index], heap[largest]);index = largest;} else {break;}}}public:void insert(int value) {heap.push_back(value);heapifyUp(heap.size() - 1);}int extractMax() {if (heap.empty()) {throw std::out_of_range("Heap is empty");}int maxValue = heap[0];heap[0] = heap.back();heap.pop_back();heapifyDown(0);return maxValue;}void buildHeap(const std::vector<int>& array) {heap = array;for (int i = (heap.size() / 2) - 1; i >= 0; --i) {heapifyDown(i);}}void printHeap() const {for (int value : heap) {std::cout << value << " ";}std::cout << std::endl;}
};int main() {MaxHeap maxHeap;maxHeap.insert(10);maxHeap.insert(20);maxHeap.insert(15);maxHeap.insert(30);maxHeap.insert(40);std::cout << "Max Heap: ";maxHeap.printHeap();std::cout << "Extracted Max: " << maxHeap.extractMax() << std::endl;std::cout << "Max Heap after extraction: ";maxHeap.printHeap();std::vector<int> array = {5, 3, 8, 1, 9};maxHeap.buildHeap(array);std::cout << "Max Heap built from array: ";maxHeap.printHeap();return 0;
}

4.2 代码解析

  • heapifyUp:用于在插入新元素后,从下往上调整堆,确保堆的性质。
  • heapifyDown:用于在删除堆顶元素后,从上往下调整堆,确保堆的性质。
  • insert:将新元素插入堆中,并调用 heapifyUp 进行调整。
  • extractMax:删除并返回堆顶元素,然后调用 heapifyDown 进行调整。
  • buildHeap:将一个无序数组构建成一个堆。

5. 堆的应用

  • 优先队列:堆是实现优先队列的理想数据结构,因为可以快速获取和删除最大或最小元素。
  • 堆排序:堆排序是一种基于堆的比较排序算法,时间复杂度为 O(n log n)。
  • Dijkstra算法:在图的单源最短路径算法中,堆用于高效地选择下一个要处理的节点。

6. 总结

堆是一种非常高效的数据结构,特别适用于需要频繁获取最大或最小元素的场景。通过数组实现堆,可以充分利用其完全二叉树的性质,使得插入、删除和构建堆的操作都能在 O(log n) 的时间内完成。

7.练习

ACWing模拟堆
这个题相较普通的堆,增添了一个需要维护的对象,就是这个数字是第几次插入的。所以我们需要额外维护两个数组posinv_pos,分别表示第k个插入的数在堆数组中的索引,和堆数组中第i个数是第几个插入的,完整代码如下:

#include <iostream>
#include <cstring>
#include <string>
using namespace std;
const int maxn = 1e5 + 7;
int heap[maxn], top;
int pos[maxn], inv_pos[maxn];
void heap_swap(int a, int b){swap(heap[a], heap[b]);swap(pos[inv_pos[a]], pos[inv_pos[b]]);swap(inv_pos[a], inv_pos[b]);
}
void down(int idx){while(1){int leftChild = idx * 2;int rightChild = idx * 2 + 1;int smallest = idx;if(leftChild <= top && heap[leftChild] < heap[smallest])smallest = leftChild;if(rightChild <= top && heap[rightChild] < heap[smallest])smallest = rightChild;if(idx != smallest) {heap_swap(idx, smallest);idx = smallest;}elsebreak;}
}
void up(int idx){while(idx != 1){int parent = idx >> 1;if(heap[parent] > heap[idx]){heap_swap(idx, parent);idx = parent;}else{break;}}
}
int main() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);int n;cin>>n;string op;int x, k, cnt = 0;while(n--){cin>>op;if(op == "I"){cin>>x;heap[++top] = x;pos[++cnt] = top;inv_pos[top] = cnt;up(top);}else if(op == "PM"){cout<<heap[1]<<endl;}else if(op == "DM"){heap_swap(1, top);top--;down(1);}else if(op == "D"){cin>>k;int now = pos[k];heap_swap(now, top);top --;down(now);up(now);}else if(op == "C"){cin>>k>>x;heap[pos[k]] = x;up(pos[k]);down(pos[k]);}}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/894741.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MyBatis-Plus笔记-快速入门

大家在日常开发中应该能发现&#xff0c;单表的CRUD功能代码重复度很高&#xff0c;也没有什么难度。而这部分代码量往往比较大&#xff0c;开发起来比较费时。 因此&#xff0c;目前企业中都会使用一些组件来简化或省略单表的CRUD开发工作。目前在国内使用较多的一个组件就是…

Maven jar 包下载失败问题处理

Maven jar 包下载失败问题处理 1.配置好国内的Maven源2.重新下载3. 其他问题 1.配置好国内的Maven源 打开⾃⼰的 Idea 检测 Maven 的配置是否正确&#xff0c;正确的配置如下图所示&#xff1a; 检查项⼀共有两个&#xff1a; 确认右边的两个勾已经选中&#xff0c;如果没有请…

2.5学习

misc buuctf-假如给我三天光明 下载附件后得到了一个压缩包和一个图片&#xff0c;压缩包为加密压缩包&#xff0c;需要解出密码&#xff0c;然后注意到这个图片并非简单的一个封面&#xff0c;在下方还有诸多点&#xff0c;有黑有灰。经过搜索&#xff0c;发现这是盲文通过与…

java进阶1——JVM

java进阶——JVM 1、JVM概述 作用 Java 虚拟机就是二进制字节码的运行环境&#xff0c;负责装载字节码到其内部&#xff0c;解释/编译为对 应平台上的机器码指令行&#xff0c;每一条 java 指令&#xff0c;java 虚拟机中都有详细定义&#xff0c;如怎么取操 作数&#xff0c…

搭建集成开发环境PyCharm

1.下载安装Python&#xff08;建议下载并安装3.9.x&#xff09; https://www.python.org/downloads/windows/ 要注意勾选“Add Python 3.9 to PATH”复选框&#xff0c;表示将Python的路径增加到环境变量中 2.安装集成开发环境Pycharm http://www.jetbrains.com/pycharm/…

《redis4.0 通信模块源码分析(一)》

【redis导读】redis作为一款高性能的内存数据库&#xff0c;面试服务端开发&#xff0c;redis是绕不开的话题&#xff0c;如果想提升自己的网络编程的水平和技巧&#xff0c;redis这款优秀的开源软件是很值得大家去分析和研究的。 笔者从大学毕业一直有分析redis源码的想法&…

开源安全一站式构建!开启企业开源治理新篇章

在如今信息技术日新月异、飞速发展的数字化时代&#xff0c;开源技术如同一股强劲的东风&#xff0c;为企业创新注入了源源不断的活力&#xff0c;然而&#xff0c;正如一枚硬币有正反两面&#xff0c;开源技术的广泛应用亦伴随着不容忽视的挑战。安全风险如影随形&#xff0c;…

DeePseek结合PS!批量处理图片的方法教程

​ ​ 今天我们来聊聊如何利用deepseek和Photoshop&#xff08;PS&#xff09;实现图片的批量处理。 传统上&#xff0c;批量修改图片尺寸、分辨率等任务往往需要编写脚本或手动处理&#xff0c;而现在有了AI的辅助&#xff0c;我们可以轻松生成PS脚本&#xff0c;实现自动化处…

Verilog基础(三):过程

过程(Procedures) - Always块 – 组合逻辑 (Always blocks – Combinational) 由于数字电路是由电线相连的逻辑门组成的,所以任何电路都可以表示为模块和赋值语句的某种组合. 然而,有时这不是描述电路最方便的方法. 两种always block是十分有用的: 组合逻辑: always @(…

2024年12月 Scratch 图形化(一级)真题解析 中国电子学会全国青少年软件编程等级考试

202412 Scratch 图形化&#xff08;一级&#xff09;真题解析 中国电子学会全国青少年软件编程等级考试 一、单选题(共25题&#xff0c;共50分) 第 1 题 点击下列哪个按钮&#xff0c;可以将红框处的程序放大&#xff1f;&#xff08; &#xff09; A. B. C. D. 标…

C++【深入 STL--list 之 迭代器与反向迭代器】

接前面的手撕list(上)文章&#xff0c;由于本人对于list的了解再一次加深。本文再次对list进行深入的分析与实现。旨在再一次梳理思路&#xff0c;修炼代码内功。 1、list 基础架构 list底层为双向带头循环链表&#xff0c;问题是如何来搭建这个list类。可以进行下面的考虑&am…

如何打开vscode系统用户全局配置的settings.json

&#x1f4cc; settings.json 的作用 settings.json 是 Visual Studio Code&#xff08;VS Code&#xff09; 的用户配置文件&#xff0c;它存储了 编辑器的个性化设置&#xff0c;包括界面布局、代码格式化、扩展插件、快捷键等&#xff0c;是用户全局配置&#xff08;影响所有…

STM32 ADC模数转换器

ADC简介 ADC&#xff08;Analog-Digital Converter&#xff09;模拟-数字转换器 ADC可以将引脚上连续变化的模拟电压转换为内存中存储的数字变量&#xff0c;建立模拟电路到数字电路的桥梁 12位逐次逼近型ADC&#xff0c;1us转换时间 输入电压范围&#xff1a;0~3.3V&#xff0…

(2025,LLM,下一 token 预测,扩散微调,L2D,推理增强,可扩展计算)从大语言模型到扩散微调

Large Language Models to Diffusion Finetuning 目录 1. 概述 2. 研究背景 3. 方法 3.1 用于 LM 微调的高斯扩散 3.2 架构 4. 主要实验结果 5. 结论 1. 概述 本文提出了一种新的微调方法——LM to Diffusion (L2D)&#xff0c;旨在赋予预训练的大语言模型&#xff08;…

学习threejs,pvr格式图片文件贴图

&#x1f468;‍⚕️ 主页&#xff1a; gis分享者 &#x1f468;‍⚕️ 感谢各位大佬 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍⚕️ 收录于专栏&#xff1a;threejs gis工程师 文章目录 一、&#x1f340;前言1.1 ☘️PVR贴图1.2 ☘️THREE.Mesh…

tkvue 入门,像写html一样写tkinter

介绍 没有官网&#xff0c;只有例子 安装 像写vue 一样写tkinter 代码 pip install tkvue作者博客 修改样式 import tkvue import tkinter.ttk as ttktkvue.configure_tk(theme"clam")class RootDialog(tkvue.Component):template """ <Top…

Java—不可变集合

不可变集合&#xff1a;不可以被修改的集合 创建不可变集合的应用场景 如果某个数据不能被修改&#xff0c;把它防御性地拷贝到不可变集合中是个很好的实践。当集合对象被不可信的库调用时&#xff0c;不可变形式是安全的。 简单理解&#xff1a;不想让别人修改集合中的内容…

每日Attention学习18——Grouped Attention Gate

模块出处 [ICLR 25 Submission] [link] UltraLightUNet: Rethinking U-shaped Network with Multi-kernel Lightweight Convolutions for Medical Image Segmentation 模块名称 Grouped Attention Gate (GAG) 模块作用 轻量特征融合 模块结构 模块特点 特征融合前使用Group…

响应式编程_04Spring 5 中的响应式编程技术栈_WebFlux 和 Spring Data Reactive

文章目录 概述响应式Web框架Spring WebFlux响应式数据访问Spring Data Reactive 概述 https://spring.io/reactive 2017 年&#xff0c;Spring 发布了新版本 Spring 5&#xff0c; Spring 5 引入了很多核心功能&#xff0c;这其中重要的就是全面拥抱了响应式编程的设计思想和实…

html中的表格属性以及合并操作

表格用table定义&#xff0c;标签标题用caption标签定义&#xff1b;用tr定义表格的若干行&#xff1b;用td定义若干个单元格&#xff1b;&#xff08;当单元格是表头时&#xff0c;用th标签定义&#xff09;&#xff08;th标签会略粗于td标签&#xff09; table的整体外观取决…