Python安居客二手小区数据爬取(2025年)

目录

  • 2025年安居客二手小区数据爬取
    • 观察目标网页
    • 观察详情页数据
    • 准备工作:安装装备就像打游戏
    • 代码详解:每行代码都是你的小兵
    • 完整代码大放送
    • 爬取结果

2025年安居客二手小区数据爬取

这段时间需要爬取安居客二手小区数据,看了一下相关教程基本也都有点久远,趁着新年期间我也把自己爬取的思路跟流程记录一下(适合有一点爬虫基础的宝宝食用),如有不对,欢迎私信交流~

观察目标网页

我们这里爬取的是安居客二手小区数据,从官网进去
在这里插入图片描述
这里看到小区的总数量,以及相关的小区的名字等信息,红框框起来的数据一般是我们所关心的
在这里插入图片描述
当然,点击小区可以进入详情页,这里列出了关于该小区更加具体的信息,我们这里尝试把框起来的数据都爬取下来!
在这里插入图片描述
知道了我们需要爬取的数据之后,下一步我们需要进一步分析这些数据的来源——数据是写在静态网页中还是从服务器异步加载过来的,让我们分析一下网页结构:
在这里插入图片描述
从上面这张图里我们可以发现数据是写在了html的源码里的,每个小区的数据都包裹在一个li-row的a标签里面,因此我们只需要把list-cell里面的所有li-row都遍历一遍,就可以获取一页的小区相关数据,当然这里还没包含详情页数据~
在这里插入图片描述

观察详情页数据

在这里插入图片描述
我们可以发现这个小区详情页的数据会存放在maininfo的div大盒子里面,然后这个大盒子里由house-price跟info两个div小盒子组成,因此我们只需要从这两个小盒子里取数据即可~下面开始搓我们的代码!

准备工作:安装装备就像打游戏

1️⃣ 装Python环境(不会的看这里)
👉 去Python官网下载最新版,安装时记得勾选"Add Python to PATH"
2️⃣ 安装必备武器库(打开cmd / powershell)

pip install requests beautifulsoup4

💡 这俩库相当于你的"爬虫工具箱",一个负责上网,一个负责解析网页
3️⃣ 准备VIP通行证 (Cookie获取)
cookie的作用可以让我们在模拟登陆的时候维持一下会话,因为安居客这个网站每隔一段时间就需要输入一下验证码或者重新登陆,设置一下cookie方便很多!!!
具体自己浏览器的cookie在登陆之后,按F12打开开发者工具,找到Network标签 → 刷新页面 → 随便选个请求 → 复制一下响应标头里的set-cookie里的内容即可~
在这里插入图片描述

代码详解:每行代码都是你的小兵

🛠️ 先看整体作战计划:

"""
作战目标:自动抓取指定数量的小区信息
作战路线:列表页 → 详情页 → 数据保存
武器配置:requests发请求,BeautifulSoup解析
特殊装备:自动重试机制防掉线
"""

🎯 核心代码拆解(重点!)

  1. 配置侦察兵参数
# 伪装成浏览器(重要!)
HEADERS = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)...'  # 完整UA太长省略
}# 你的VIP通行证(定期更新!)
COOKIES = {'ajkAuthTicket': 'TT=3f67c23d85c369b7018fcb4e...',  # 填你复制的Cookie'ctid': '24'
}
  1. 创建不死鸟连接器
def create_session():session = requests.Session()# 配置自动重试(网络不好也不怕)adapter = HTTPAdapter(max_retries=Retry(total=3, backoff_factor=1,status_forcelist=[500, 502, 503, 504]))session.mount('https://', adapter)return session

💡 这个相当于你的"网络保镖",遇到问题自动重试三次
3. 万能数据提取器

def safe_get_text(element, selector, default='N/A'):""" 安全提取文本,找不到元素也不报错 """target = element.select_one(selector)return target.text.strip() if target else default

🌟 使用场景:就像用镊子精准夹取页面数据,夹不到就返回默认值
4. 主力作战部队(main函数)

def main():# 输入要抓多少小区community_count = int(input("想抓多少小区?输入数字:"))# 创建侦察兵小队with open('小区数据.csv', 'w', encoding='utf-8') as f:writer = csv.writer(f)writer.writerow(['小区名称', '价格', '地址', ...])  # 完整表头# 开始翻页抓取for page in range(1, 总页数+1):# 获取当前页所有小区链接# 逐个访问详情页提取数据# 保存到CSV# 休息0.5秒防止被封

💡 这里用了with open自动管理文件,就像有个小秘书帮你保存数据

完整代码大放送

"""
安居客小区信息爬虫 
"""
import csv
import time
import requests
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from bs4 import BeautifulSoup# ========================== 全局配置 ==========================
# 请求头配置(模拟浏览器访问)
HEADERS = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/132.0.0.0 Safari/537.36 Edg/132.0.0.0','Referer': 'https://member.anjuke.com/','Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
}# Cookies配置(需要定期更新)
COOKIES = {'ajkAuthTicket': 'TT=3f67c23d85c369b7018fcb4e1418466f&TS=1738219179437&PBODY=IotzzfNhkTJKGH_LuUrSfcNHUGin1wBsHjAQYBL3k0USZDHrUxL6RQUv1ZsFPDHjxvQl0uvU2zSgIEdSFCHUc7wYEf4slKV2U2F9rwNnp6xHgufTxMgdYWZEob_Tep-poDqBMbQQgayOQhsaRgVjw8K8ut3QqqMfPgYGpKJJBHw&VER=2&CUID=fzgJGetduRhII81NXadF-HKyO1Hvr8W-','ctid': '24',
}# 重试策略配置
RETRY_STRATEGY = Retry(total=3,  # 最大重试次数backoff_factor=1,  # 重试等待时间因子status_forcelist=[500, 502, 503, 504],  # 需要重试的状态码allowed_methods=frozenset(['GET', 'POST'])  # 允许重试的HTTP方法
)# 其他配置
BASE_URL = 'https://foshan.anjuke.com/community/p{page}/'  # 分页URL模板
REQUEST_DELAY = 0.5  # 请求间隔时间(秒),防止被封禁
CSV_HEADERS = [  # CSV文件表头'小区名称', '价格', '地址', '小区链接','物业类型', '权属类别', '竣工时间', '产权年限', '总户数', '总建筑面积', '容积率', '绿化率', '建筑类型', '所属商圈', '统一供暖', '供水供电', '停车位', '物业费','停车费', '车位管理费', '物业公司', '小区地址', '开发商', '在售房源', '在租房源'
]# ========================== 工具函数 ==========================
def create_session():"""创建带有重试策略的请求会话返回:requests.Session - 配置好的会话对象"""session = requests.Session()adapter = HTTPAdapter(max_retries=RETRY_STRATEGY)session.mount('https://', adapter)session.mount('http://', adapter)return sessiondef safe_get_text(element, selector, default='N/A'):"""安全获取元素文本内容参数:element: BeautifulSoup对象 - 父元素selector: str - CSS选择器default: str - 默认返回值返回:str - 元素的文本内容或默认值"""target = element.select_one(selector)return target.get_text(strip=True) if target else default# ========================== 主程序 ==========================
def main():# 用户输入community_count = int(input("请输入需要抓取的小区数量:"))# 初始化会话session = create_session()# 准备CSV文件with open('communities.csv', mode='w', newline='', encoding='utf-8') as csv_file:writer = csv.writer(csv_file)writer.writerow(CSV_HEADERS)page_count = (community_count // 25) + (1 if community_count % 25 else 0)collected = 0  # 已收集数量# 分页抓取for current_page in range(1, page_count + 1):print(f"\n➤ 正在处理第 {current_page}/{page_count} 页...")# 获取列表页try:list_url = BASE_URL.format(page=current_page)response = session.get(list_url,headers=HEADERS,cookies=COOKIES,timeout=10)response.raise_for_status()except Exception as e:print(f"⚠️ 列表页请求失败: {e}")continue# 解析小区列表list_soup = BeautifulSoup(response.text, 'html.parser')communities = list_soup.find_all('a', class_='li-row')# 遍历每个小区for community in communities:if collected >= community_count:break# 提取基本信息name = safe_get_text(community, 'div.li-title')price = safe_get_text(community, 'div.community-price')address = safe_get_text(community, 'div.props')link = community.get('href', '')print(f"\n▌ 正在处理小区:{name}")# 获取详情页try:detail_response = session.get(link,headers=HEADERS,cookies=COOKIES,timeout=15)detail_response.raise_for_status()except Exception as e:print(f"  ⚠️ 详情页请求失败: {e}")continue# 解析详情页detail_soup = BeautifulSoup(detail_response.text, 'html.parser')details = []# 提取主要信息for index in range(14):  # 0-13对应预设的标签value = safe_get_text(detail_soup, f'div.value.value_{index}')details.append(value)# 提取额外信息extra_info = {'停车费': 'N/A','车位管理费': 'N/A','物业公司': 'N/A','小区地址': 'N/A','开发商': 'N/A'}for column in detail_soup.find_all('div', class_='column-1'):label = safe_get_text(column, 'div.label')value = safe_get_text(column, 'div.value')for key in extra_info:if key in label:extra_info[key] = value# 提取房源信息sale = detail_soup.find('div', class_='sale')rent = detail_soup.find('div', class_='rent')sale_info = f"{safe_get_text(sale, 'i.source-number')} {safe_get_text(sale, 'i.source-unit')}" if sale else 'N/A'rent_info = f"{safe_get_text(rent, 'i.source-number')} {safe_get_text(rent, 'i.source-unit')}" if rent else 'N/A'# 构建完整数据行row = [name, price, address, link,*details,*extra_info.values(),sale_info, rent_info]# 写入CSVwriter.writerow(row)collected += 1print(f"  ✅ 已保存 {collected}/{community_count} - {name}")# 请求间隔time.sleep(REQUEST_DELAY)print("\n🎉 数据抓取完成!结果已保存到 communities.csv")if __name__ == '__main__':main()

爬取结果

这是爬取的结果,如果只要其中的部分列,我建议直接删除最终的csv表格,而不是修改代码,代码能运行就尽量别动 -_-!!!
在这里插入图片描述

在这里插入图片描述
完结撒花~

参考文章:
[1]: 菜鸟爬虫——获取安居客二手房信息
[2]:Python爬虫之路(9)–an居客数据获取
[3]:Python之爬取安居客网二手房小区详情页数据
[4]:python使用代理爬取安居客二手房数据(一)
[5]:(项目)爬取安居客二手房房屋信息
[6]:【爬虫】安居客二手房数据爬取

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/894403.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenCV:开运算

目录 1. 简述 2. 用腐蚀和膨胀实现开运算 2.1 代码示例 2.2 运行结果 3. 开运算接口 3.1 参数详解 3.2 代码示例 3.3 运行结果 4. 开运算应用场景 5. 注意事项 6. 总结 相关阅读 OpenCV:图像的腐蚀与膨胀-CSDN博客 OpenCV:闭运算-CSDN博客 …

JavaWeb入门-请求响应(Day3)

(一)请求响应概述 请求(HttpServletRequest):获取请求数据 响应(HttpServletResponse):设置响应数据 BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器就可访问,应用程序的逻辑和数据都存储在服务端(维护方便,响应速度一般) CS架构:Client/ser…

【SLAM】于AutoDL云上GPU运行GCNv2_SLAM的记录

配置GCNv2_SLAM所需环境并实现AutoDL云端运行项目的全过程记录。 本文首发于❄慕雪的寒舍 1. 引子 前几天写了一篇在本地虚拟机里面CPU运行GCNv2_SLAM项目的博客:链接,关于GCNv2_SLAM项目相关的介绍请移步此文章,本文不再重复说明。 GCNv2:…

罗格斯大学:通过输入嵌入对齐选择agent

📖标题:AgentRec: Agent Recommendation Using Sentence Embeddings Aligned to Human Feedback 🌐来源:arXiv, 2501.13333 🌟摘要 🔸多代理系统必须决定哪个代理最适合给定的任务。我们提出了一种新的架…

团体程序设计天梯赛-练习集——L1-025 正整数A+B

一年之际在于春,新年的第一天,大家敲代码了吗?哈哈 前言 这道题分值是15分,值这个分,有一小点运算,难度不大,虽然说做出来了,但是有两个小疑点。 L1-025 正整数AB 题的目标很简单…

Leetcode:598

1,题目 2,思路 脑筋急转弯,看题目一时半会还没搞懂意思。 其实不然就是说ops是个矩阵集合,集合的每个矩阵有俩个元素理解为行列边距 m和n是理解为一个主矩阵,计算ops的每个小矩阵还有这个主矩阵的交集返回面积 3&…

web前端12--表单和表格

1、表格标签 使用<table>标签来定义表格 HTML 中的表格和Excel中的表格是类似的&#xff0c;都包括行、列、单元格、表头等元素。 区别&#xff1a;HTML表格在功能方面远没有Excel表格强大&#xff0c;HTML表格不支持排序、求和、方差等数学计算&#xff0c;主要用于布…

【AI】探索自然语言处理(NLP):从基础到前沿技术及代码实践

Hi &#xff01; 云边有个稻草人-CSDN博客 必须有为成功付出代价的决心&#xff0c;然后想办法付出这个代价。 目录 引言 1. 什么是自然语言处理&#xff08;NLP&#xff09;&#xff1f; 2. NLP的基础技术 2.1 词袋模型&#xff08;Bag-of-Words&#xff0c;BoW&#xff…

第1章 量子暗网中的血色黎明

月球暗面的危机与阴谋 量子隧穿效应催生的幽蓝电弧&#xff0c;于环形山表面肆意跳跃&#xff0c;仿若无数奋力挣扎的机械蠕虫&#xff0c;将月球暗面的死寂打破&#xff0c;徒增几分诡异。艾丽伫立在被遗弃的“广寒宫”量子基站顶端&#xff0c;机械义眼之中&#xff0c;倒映着…

AI-ISP论文Learning to See in the Dark解读

论文地址&#xff1a;Learning to See in the Dark 图1. 利用卷积网络进行极微光成像。黑暗的室内环境。相机处的照度小于0.1勒克斯。索尼α7S II传感器曝光时间为1/30秒。(a) 相机在ISO 8000下拍摄的图像。(b) 相机在ISO 409600下拍摄的图像。该图像存在噪点和色彩偏差。©…

【Git】初识Git Git基本操作详解

文章目录 学习目标Ⅰ. 初始 Git&#x1f4a5;注意事项 Ⅱ. Git 安装Linux-centos安装Git Ⅲ. Git基本操作一、创建git本地仓库 -- git init二、配置 Git -- git config三、认识工作区、暂存区、版本库① 工作区② 暂存区③ 版本库④ 三者的关系 四、添加、提交更改、查看提交日…

使用 Spring JDBC 进行数据库操作:深入解析 JdbcTemplate

目录 1. Spring JDBC 简介 2. JdbcTemplate 介绍 3. 创建数据库和表 4. 配置 Spring JDBC 5. 创建实体类 6. 使用 JdbcTemplate 实现增、删、改、查操作 7. Spring JDBC 优点 8. 小结 1. Spring JDBC 简介 Spring JDBC 是 Spring 框架中的一个模块&#xff0c;旨在简化…

BUUCTF [Black Watch 入群题]PWN1 题解

1.下载文件 exeinfo checksec 32位 IDA32 看到关键函数 read两次 第一次read的变量s在bss段&#xff1b;第二次的buf到ebp距离为 24 但是第二次的read字节只能刚好填满返回地址 传不进去变量 所以想到栈迁移 将栈移动到变量s所在位置上来 同时 这题开了NX 无直接的binsh和s…

Cubemx文件系统挂载多设备

cubumx版本&#xff1a;6.13.0 芯片&#xff1a;STM32F407VET6 在上一篇文章中介绍了Cubemx的FATFS和SD卡的配置&#xff0c;由于SD卡使用的是SDIO通讯&#xff0c;因此具体驱动不需要自己实现&#xff0c;Cubemx中就可以直接配置然后生成SDIO的驱动&#xff0c;并将SD卡驱动和…

java练习(2)

回文数&#xff08;题目来自力扣&#xff09; 给你一个整数 x &#xff0c;如果 x 是一个回文整数&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 回文数 是指正序&#xff08;从左向右&#xff09;和倒序&#xff08;从右向左&#xff09;读都是一样的整…

使用 Tauri 2 + Next.js 开发跨平台桌面应用实践:Singbox GUI 实践

Singbox GUI 实践 最近用 Tauri Next.js 做了个项目 - Singbox GUI&#xff0c;是个给 sing-box 用的图形界面工具。支持 Windows、Linux 和 macOS。作为第一次接触这两个框架的新手&#xff0c;感觉收获还蛮多的&#xff0c;今天来分享下开发过程中的一些经验~ 为啥要做这个…

ComfyUI安装调用DeepSeek——DeepSeek多模态之图形模型安装问题解决(ComfyUI-Janus-Pro)

ComfyUI 的 Janus-Pro 节点&#xff0c;一个统一的多模态理解和生成框架。 试用&#xff1a; https://huggingface.co/spaces/deepseek-ai/Janus-1.3B https://huggingface.co/spaces/deepseek-ai/Janus-Pro-7B https://huggingface.co/spaces/deepseek-ai/JanusFlow-1.3B 安装…

索引的底层数据结构、B+树的结构、为什么InnoDB使用B+树而不是B树呢

索引的底层数据结构 MySQL中常用的是Hash索引和B树索引 Hash索引&#xff1a;基于哈希表实现的&#xff0c;查找速度非常快&#xff0c;但是由于哈希表的特性&#xff0c;不支持范围查找和排序&#xff0c;在MySQL中支持的哈希索引是自适应的&#xff0c;不能手动创建 B树的…

RK3568中使用QT opencv(显示基础图像)

文章目录 一、查看对应的开发环境是否有opencv的库二、QT使用opencv一、查看对应的开发环境是否有opencv的库 在开发板中的/usr/lib目录下查看是否有opencv的库: 这里使用的是正点原子的ubuntu虚拟机,在他的虚拟机里面已经安装好了opencv的库。 二、QT使用opencv 在QT pr…

29.Word:公司本财年的年度报告【13】

目录 NO1.2.3.4 NO5.6.7​ NO8.9.10​ NO1.2.3.4 另存为F12&#xff1a;考生文件夹&#xff1a;Word.docx选中绿色标记的标题文本→样式对话框→单击右键→点击样式对话框→单击右键→修改→所有脚本→颜色/字体/名称→边框&#xff1a;0.5磅、黑色、单线条&#xff1a;点…