Flink (十二) :Table API SQL (一) 概览

Apache Flink 有两种关系型 API 来做流批统一处理:Table API 和 SQL。Table API 是用于 Scala 和 Java 语言的查询API,它可以用一种非常直观的方式来组合使用选取、过滤、join 等关系型算子。Flink SQL 是基于 Apache Calcite 来实现的标准 SQL。无论输入是连续的(流式)还是有界的(批处理),在两个接口中指定的查询都具有相同的语义,并指定相同的结果。

Table API 和 SQL 两种 API 是紧密集成的,以及 DataStream API。你可以在这些 API 之间,以及一些基于这些 API 的库之间轻松的切换。例如,您可以使用 MATCH_RECOGNIZE 子句从表中检测模式,然后使用 DataStream API 基于匹配的模式构建警报。

1. Table API 和 SQL 程序的结构

所有用于批处理和流处理的 Table API 和 SQL 程序都遵循相同的模式。下面的代码示例展示了 Table API 和 SQL 程序的通用结构。

import org.apache.flink.table.api.*;
import org.apache.flink.connector.datagen.table.DataGenConnectorOptions;// Create a TableEnvironment for batch or streaming execution.
// See the "Create a TableEnvironment" section for details.
TableEnvironment tableEnv = TableEnvironment.create(/*…*/);// Create a source table
tableEnv.createTemporaryTable("SourceTable", TableDescriptor.forConnector("datagen").schema(Schema.newBuilder().column("f0", DataTypes.STRING()).build()).option(DataGenConnectorOptions.ROWS_PER_SECOND, 100L).build());// Create a sink table (using SQL DDL)
tableEnv.executeSql("CREATE TEMPORARY TABLE SinkTable WITH ('connector' = 'blackhole') LIKE SourceTable (EXCLUDING OPTIONS) ");// Create a Table object from a Table API query
Table table1 = tableEnv.from("SourceTable");// Create a Table object from a SQL query
Table table2 = tableEnv.sqlQuery("SELECT * FROM SourceTable");// Emit a Table API result Table to a TableSink, same for SQL result
TableResult tableResult = table1.insertInto("SinkTable").execute();

2. 创建 TableEnvironment

TableEnvironment 是 Table API 和 SQL 的核心概念。它负责:

  • 在内部的 catalog 中注册 Table
  • 注册外部的 catalog
  • 加载可插拔模块
  • 执行 SQL 查询
  • 注册自定义函数 (scalar、table 或 aggregation)
  • DataStream 和 Table 之间的转换(面向 StreamTableEnvironment )

Table 总是与特定的 TableEnvironment 绑定。 不能在同一条查询中使用不同 TableEnvironment 中的表,例如,对它们进行 join 或 union 操作。 TableEnvironment 可以通过静态方法 TableEnvironment.create() 创建。

import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.TableEnvironment;EnvironmentSettings settings = EnvironmentSettings.newInstance().inStreamingMode()//.inBatchMode().build();TableEnvironment tEnv = TableEnvironment.create(settings);

或者,用户可以从现有的 StreamExecutionEnvironment 创建一个 

StreamTableEnvironment 与 DataStream API 互操作。

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);

3. 在 Catalog 中创建表

TableEnvironment 维护着一个由标识符(identifier)创建的表 catalog 的映射。标识符由三个部分组成:catalog 名称、数据库名称以及对象名称。如果 catalog 或者数据库没有指明,就会使用当前默认值。

Table 可以是虚拟的(视图 VIEWS)也可以是常规的(表 TABLES)。视图 VIEWS可以从已经存在的Table中创建,一般是 Table API 或者 SQL 的查询结果。 表TABLES描述的是外部数据,例如文件、数据库表或者消息队列。

3.1 临时表(Temporary Table)和永久表(Permanent Table)

表可以是临时的,并与单个 Flink 会话(session)的生命周期相关,也可以是永久的,并且在多个 Flink 会话和群集(cluster)中可见。

永久表需要Catalog(例如 Hive Metastore)以维护表的元数据。一旦永久表被创建,它将对任何连接到 catalog 的 Flink 会话可见且持续存在,直至被明确删除。

另一方面,临时表通常保存于内存中并且仅在创建它们的 Flink 会话持续期间存在。这些表对于其它会话是不可见的。它们不与任何 catalog 或者数据库绑定但可以在一个命名空间(namespace)中创建。即使它们对应的数据库被删除,临时表也不会被删除。

3.1.1 屏蔽(Shadowing)

可以使用与已存在的永久表相同的标识符去注册临时表。临时表会屏蔽永久表,并且只要临时表存在,永久表就无法访问。所有使用该标识符的查询都将作用于临时表。

3.2 创建表

3.2.1 虚拟表

在 SQL 的术语中,Table API 的对象对应于视图(虚拟表)。它封装了一个逻辑查询计划。它可以通过以下方法在 catalog 中创建:

// get a TableEnvironment
TableEnvironment tableEnv = ...; // see "Create a TableEnvironment" section// table is the result of a simple projection query 
Table projTable = tableEnv.from("X").select(...);// register the Table projTable as table "projectedTable"
tableEnv.createTemporaryView("projectedTable", projTable);

注意: 从传统数据库系统的角度来看,Table 对象与 VIEW 视图非常像。也就是,定义了 Table 的查询是没有被优化的, 而且会被内嵌到另一个引用了这个注册了的 Table的查询中。如果多个查询都引用了同一个注册了的Table,那么它会被内嵌每个查询中并被执行多次, 也就是说注册了的Table的结果不会被共享。

3.2.2 Connector Tables

另外一个方式去创建 TABLE 是通过 connector 声明。Connector 描述了存储表数据的外部系统。存储系统例如 Apache Kafka 或者常规的文件系统都可以通过这种方式来声明。这样的表可以直接使用 Table API 创建,也可以通过切换到 SQL DDL 来创建。

// Using table descriptors
final TableDescriptor sourceDescriptor = TableDescriptor.forConnector("datagen").schema(Schema.newBuilder().column("f0", DataTypes.STRING()).build()).option(DataGenConnectorOptions.ROWS_PER_SECOND, 100L).build();tableEnv.createTable("SourceTableA", sourceDescriptor);
tableEnv.createTemporaryTable("SourceTableB", sourceDescriptor);// Using SQL DDL
tableEnv.executeSql("CREATE [TEMPORARY] TABLE MyTable (...) WITH (...)");

3.3 扩展表标识符

表总是通过三元标识符注册,包括 catalog 名、数据库名和表名。用户可以指定一个 catalog 和数据库作为 “当前catalog” 和"当前数据库"。有了这些,那么刚刚提到的三元标识符的前两个部分就可以被省略了。如果前两部分的标识符没有指定, 那么会使用当前的 catalog 和当前数据库。用户也可以通过 Table API 或 SQL 切换当前的 catalog 和当前的数据库。标识符遵循 SQL 标准,因此使用时需要用反引号(`)进行转义。

TableEnvironment tEnv = ...;
tEnv.useCatalog("custom_catalog");
tEnv.useDatabase("custom_database");Table table = ...;// register the view named 'exampleView' in the catalog named 'custom_catalog'
// in the database named 'custom_database' 
tableEnv.createTemporaryView("exampleView", table);// register the view named 'exampleView' in the catalog named 'custom_catalog'
// in the database named 'other_database' 
tableEnv.createTemporaryView("other_database.exampleView", table);// register the view named 'example.View' in the catalog named 'custom_catalog'
// in the database named 'custom_database' 
tableEnv.createTemporaryView("`example.View`", table);// register the view named 'exampleView' in the catalog named 'other_catalog'
// in the database named 'other_database' 
tableEnv.createTemporaryView("other_catalog.other_database.exampleView", table);

4. 查询表

4.1 Table API

Table API 是关于 Scala 和 Java 的集成语言式查询 API。与 SQL 相反,Table API 的查询不是由字符串指定,而是在宿主语言中逐步构建。Table API 是基于 Table 类的,该类表示一个表(流或批处理),并提供使用关系操作的方法。这些方法返回一个新的 Table 对象,该对象表示对输入 Table 进行关系操作的结果。 一些关系操作由多个方法调用组成,例如 table.groupBy(...).select(),其中 groupBy(...) 指定 table 的分组,而 select(...) 在 table 分组上的投影。

以下示例展示了一个简单的 Table API 聚合查询:

// get a TableEnvironment
TableEnvironment tableEnv = ...; // see "Create a TableEnvironment" section// register Orders table// scan registered Orders table
Table orders = tableEnv.from("Orders");
// compute revenue for all customers from France
Table revenue = orders.filter($("cCountry").isEqual("FRANCE")).groupBy($("cID"), $("cName")).select($("cID"), $("cName"), $("revenue").sum().as("revSum"));// emit or convert Table
// execute query

4.2 SQL

Flink SQL 是基于实现了SQL标准的 Apache Calcite 的。SQL 查询由常规字符串指定。

下面的示例演示了如何指定查询并将结果作为 Table 对象返回。

// get a TableEnvironment
TableEnvironment tableEnv = ...; // see "Create a TableEnvironment" section// register Orders table// compute revenue for all customers from France
Table revenue = tableEnv.sqlQuery("SELECT cID, cName, SUM(revenue) AS revSum " +"FROM Orders " +"WHERE cCountry = 'FRANCE' " +"GROUP BY cID, cName");// emit or convert Table
// execute query

如下的示例展示了如何指定一个更新查询,将查询的结果插入到已注册的表中。

// get a TableEnvironment
TableEnvironment tableEnv = ...; // see "Create a TableEnvironment" section// register "Orders" table
// register "RevenueFrance" output table// compute revenue for all customers from France and emit to "RevenueFrance"
tableEnv.executeSql("INSERT INTO RevenueFrance " +"SELECT cID, cName, SUM(revenue) AS revSum " +"FROM Orders " +"WHERE cCountry = 'FRANCE' " +"GROUP BY cID, cName");

4.3 混用 Table API 和 SQL

Table API 和 SQL 查询的混用非常简单因为它们都返回 Table 对象:

  • 可以在 SQL 查询返回的 Table 对象上定义 Table API 查询。
  • 在 TableEnvironment 中注册的结果表可以在 SQL 查询的 FROM 子句中引用,通过这种方法就可以在 Table API 查询的结果上定义 SQL 查询。

5. 输出表

Table 通过写入 TableSink 输出。TableSink 是一个通用接口,用于支持多种文件格式(如 CSV、Apache Parquet、Apache Avro)、存储系统(如 JDBC、Apache HBase、Apache Cassandra、Elasticsearch)或消息队列系统(如 Apache Kafka、RabbitMQ)。

批处理 Table 只能写入 BatchTableSink,而流处理 Table 需要指定写入 AppendStreamTableSinkRetractStreamTableSink 或者 UpsertStreamTableSink

方法 Table.insertInto(String tableName) 定义了一个完整的端到端管道将源表中的数据传输到一个被注册的输出表中。 该方法通过名称在 catalog 中查找输出表并确认 Table schema 和输出表 schema 一致。 可以通过方法 TablePipeline.explain() 和 TablePipeline.execute() 分别来解释和执行一个数据流管道。

下面的示例演示如何输出 Table

// get a TableEnvironment
TableEnvironment tableEnv = ...; // see "Create a TableEnvironment" section// create an output Table
final Schema schema = Schema.newBuilder().column("a", DataTypes.INT()).column("b", DataTypes.STRING()).column("c", DataTypes.BIGINT()).build();tableEnv.createTemporaryTable("CsvSinkTable", TableDescriptor.forConnector("filesystem").schema(schema).option("path", "/path/to/file").format(FormatDescriptor.forFormat("csv").option("field-delimiter", "|").build()).build());// compute a result Table using Table API operators and/or SQL queries
Table result = ...;// Prepare the insert into pipeline
TablePipeline pipeline = result.insertInto("CsvSinkTable");// Print explain details
pipeline.printExplain();// emit the result Table to the registered TableSink
pipeline.execute();

6. 翻译与执行查询

不论输入数据源是流式的还是批式的,Table API 和 SQL 查询都会被转换成 DataStream 程序。 查询在内部表示为逻辑查询计划,并被翻译成两个阶段:

  1. 优化逻辑执行计划
  2. 翻译成 DataStream 程序

Table API 或者 SQL 查询在下列情况下会被翻译:

  • 当 TableEnvironment.executeSql() 被调用时。该方法是用来执行一个 SQL 语句,一旦该方法被调用, SQL 语句立即被翻译。
  • 当 TablePipeline.execute() 被调用时。该方法是用来执行一个源表到输出表的数据流,一旦该方法被调用, TABLE API 程序立即被翻译。
  • 当 Table.execute() 被调用时。该方法是用来将一个表的内容收集到本地,一旦该方法被调用, TABLE API 程序立即被翻译。
  • 当 StatementSet.execute() 被调用时。TablePipeline (通过 StatementSet.add() 输出给某个 Sink)和 INSERT 语句 (通过调用 StatementSet.addInsertSql())会先被缓存到 StatementSet 中,StatementSet.execute() 方法被调用时,所有的 sink 会被优化成一张有向无环图。
  • 当 Table 被转换成 DataStream 时。转换完成后,它就成为一个普通的 DataStream 程序,并会在调用 StreamExecutionEnvironment.execute() 时被执行。

7. 查询优化

Apache Flink 使用并扩展了 Apache Calcite 来执行复杂的查询优化。 这包括一系列基于规则和成本的优化,例如:

  • 基于 Apache Calcite 的子查询解相关
  • 投影剪裁
  • 分区剪裁
  • 过滤器下推
  • 子计划消除重复数据以避免重复计算
  • 特殊子查询重写,包括两部分:
    • 将 IN 和 EXISTS 转换为 left semi-joins
    • 将 NOT IN 和 NOT EXISTS 转换为 left anti-join
  • 可选 join 重新排序
    • 通过 table.optimizer.join-reorder-enabled 启用

注意: 当前仅在子查询重写的结合条件下支持 IN / EXISTS / NOT IN / NOT EXISTS。优化器不仅基于计划,而且还基于可从数据源获得的丰富统计信息以及每个算子(例如 io,cpu,网络和内存)的细粒度成本来做出明智的决策。高级用户可以通过 CalciteConfig 对象提供自定义优化,可以通过调用 TableEnvironment#getConfig#setPlannerConfig 将其提供给 TableEnvironment。

8. 解释表

Table API 提供了一种机制来解释计算 Table 的逻辑和优化查询计划。 这是通过 Table.explain() 方法或者 StatementSet.explain() 方法来完成的。Table.explain() 返回一个 Table 的计划。StatementSet.explain() 返回多 sink 计划的结果。它返回一个描述三种计划的字符串:

  1. 关系查询的抽象语法树(the Abstract Syntax Tree),即未优化的逻辑查询计划,
  2. 优化的逻辑查询计划
  3. 物理执行计划。

可以用 TableEnvironment.explainSql() 方法和 TableEnvironment.executeSql() 方法支持执行一个 EXPLAIN 语句获取逻辑和优化查询计划.

以下代码展示了一个示例以及对给定 Table 使用 Table.explain() 方法的相应输出:

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);DataStream<Tuple2<Integer, String>> stream1 = env.fromElements(new Tuple2<>(1, "hello"));
DataStream<Tuple2<Integer, String>> stream2 = env.fromElements(new Tuple2<>(1, "hello"));// explain Table API
Table table1 = tEnv.fromDataStream(stream1, $("count"), $("word"));
Table table2 = tEnv.fromDataStream(stream2, $("count"), $("word"));
Table table = table1.where($("word").like("F%")).unionAll(table2);System.out.println(table.explain());

上述例子的结果是:

== Abstract Syntax Tree ==
LogicalUnion(all=[true])
:- LogicalFilter(condition=[LIKE($1, _UTF-16LE'F%')])
:  +- LogicalTableScan(table=[[Unregistered_DataStream_1]])
+- LogicalTableScan(table=[[Unregistered_DataStream_2]])== Optimized Physical Plan ==
Union(all=[true], union=[count, word])
:- Calc(select=[count, word], where=[LIKE(word, _UTF-16LE'F%')])
:  +- DataStreamScan(table=[[Unregistered_DataStream_1]], fields=[count, word])
+- DataStreamScan(table=[[Unregistered_DataStream_2]], fields=[count, word])== Optimized Execution Plan ==
Union(all=[true], union=[count, word])
:- Calc(select=[count, word], where=[LIKE(word, _UTF-16LE'F%')])
:  +- DataStreamScan(table=[[Unregistered_DataStream_1]], fields=[count, word])
+- DataStreamScan(table=[[Unregistered_DataStream_2]], fields=[count, word])

以下代码展示了一个示例以及使用 StatementSet.explain() 的多 sink 计划的相应输出:

EnvironmentSettings settings = EnvironmentSettings.inStreamingMode();
TableEnvironment tEnv = TableEnvironment.create(settings);final Schema schema = Schema.newBuilder().column("count", DataTypes.INT()).column("word", DataTypes.STRING()).build();tEnv.createTemporaryTable("MySource1", TableDescriptor.forConnector("filesystem").schema(schema).option("path", "/source/path1").format("csv").build());
tEnv.createTemporaryTable("MySource2", TableDescriptor.forConnector("filesystem").schema(schema).option("path", "/source/path2").format("csv").build());
tEnv.createTemporaryTable("MySink1", TableDescriptor.forConnector("filesystem").schema(schema).option("path", "/sink/path1").format("csv").build());
tEnv.createTemporaryTable("MySink2", TableDescriptor.forConnector("filesystem").schema(schema).option("path", "/sink/path2").format("csv").build());StatementSet stmtSet = tEnv.createStatementSet();Table table1 = tEnv.from("MySource1").where($("word").like("F%"));
stmtSet.add(table1.insertInto("MySink1"));Table table2 = table1.unionAll(tEnv.from("MySource2"));
stmtSet.add(table2.insertInto("MySink2"));String explanation = stmtSet.explain();
System.out.println(explanation);

多 sink 计划的结果是:

== Abstract Syntax Tree ==
LogicalLegacySink(name=[`default_catalog`.`default_database`.`MySink1`], fields=[count, word])
+- LogicalFilter(condition=[LIKE($1, _UTF-16LE'F%')])+- LogicalTableScan(table=[[default_catalog, default_database, MySource1, source: [CsvTableSource(read fields: count, word)]]])LogicalLegacySink(name=[`default_catalog`.`default_database`.`MySink2`], fields=[count, word])
+- LogicalUnion(all=[true])
:- LogicalFilter(condition=[LIKE($1, _UTF-16LE'F%')])
:  +- LogicalTableScan(table=[[default_catalog, default_database, MySource1, source: [CsvTableSource(read fields: count, word)]]])
+- LogicalTableScan(table=[[default_catalog, default_database, MySource2, source: [CsvTableSource(read fields: count, word)]]])== Optimized Physical Plan ==
LegacySink(name=[`default_catalog`.`default_database`.`MySink1`], fields=[count, word])
+- Calc(select=[count, word], where=[LIKE(word, _UTF-16LE'F%')])
+- LegacyTableSourceScan(table=[[default_catalog, default_database, MySource1, source: [CsvTableSource(read fields: count, word)]]], fields=[count, word])LegacySink(name=[`default_catalog`.`default_database`.`MySink2`], fields=[count, word])
+- Union(all=[true], union=[count, word])
:- Calc(select=[count, word], where=[LIKE(word, _UTF-16LE'F%')])
:  +- LegacyTableSourceScan(table=[[default_catalog, default_database, MySource1, source: [CsvTableSource(read fields: count, word)]]], fields=[count, word])
+- LegacyTableSourceScan(table=[[default_catalog, default_database, MySource2, source: [CsvTableSource(read fields: count, word)]]], fields=[count, word])== Optimized Execution Plan ==
Calc(select=[count, word], where=[LIKE(word, _UTF-16LE'F%')])(reuse_id=[1])
+- LegacyTableSourceScan(table=[[default_catalog, default_database, MySource1, source: [CsvTableSource(read fields: count, word)]]], fields=[count, word])LegacySink(name=[`default_catalog`.`default_database`.`MySink1`], fields=[count, word])
+- Reused(reference_id=[1])LegacySink(name=[`default_catalog`.`default_database`.`MySink2`], fields=[count, word])
+- Union(all=[true], union=[count, word])
:- Reused(reference_id=[1])
+- LegacyTableSourceScan(table=[[default_catalog, default_database, MySource2, source: [CsvTableSource(read fields: count, word)]]], fields=[count, word])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/894262.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用vhd虚拟磁盘安装两个win10系统

使用vhd虚拟磁盘安装两个win10系统 前言vhd虚拟磁盘技术简介准备工具开始动手实践1.winX选择磁盘管理2.选择“操作”--“创建VHD”3.自定义一个位置&#xff0c;输入虚拟磁盘大小4.右键初始化磁盘5.选择GPT分区表格式6.右键新建简单卷7.给卷起个名字&#xff0c;用于区分8.打开…

基于云计算、大数据与YOLO设计的火灾/火焰目标检测

摘要&#xff1a;本研究针对火灾早期预警检测需求&#xff0c;采用在Kaggle平台获取数据、采用云计算部署的方式&#xff0c;以YOLOv11构建模型&#xff0c;使用云计算服务器训练模型。经训练&#xff0c;box loss从约3.5降至1.0&#xff0c;cls loss从约4.0降至1.0&#xff0c…

计算机毕业设计Python+CNN卷积神经网络考研院校推荐系统 考研分数线预测 考研推荐系统 考研爬虫 考研大数据 Hadoop 大数据毕设 机器学习

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…

小程序-基础加强-自定义组件

前言 这次讲自定义组件 1. 准备今天要用到的项目 2. 初步创建并使用自定义组件 这样就成功在home中引入了test组件 在json中引用了这个组件才能用这个组件 现在我们来实现全局引用组件 在app.json这样使用就可以了 3. 自定义组件的样式 发现页面里面的文本和组件里面的文…

docker安装emqx

emqx安装 拉取emqx镜像 docker pull emqx/emqx:v4.1.0 运行docker容器 docker run -tid --name emqx -p 1883:1883 -p 8083:8083 -p 8081:8081 -p 8883:8883 -p 8084:8084 -p 18083:18083 emqx/emqx:v4.1.0 放行端口 1、如果要是自己的虚拟机&#xff0c;并且关闭了防火墙&a…

【4Day创客实践入门教程】Day4 迈向高手之路——进一步学习!

Day4 迈向高手之路——进一步学习&#xff01; 目录 Day4 迈向高手之路——进一步学习&#xff01;更多的开发板外壳制作 Day0 创想启程——课程与项目预览Day1 工具箱构建——开发环境的构建Day2 探秘微控制器——单片机与MicroPython初步Day3 实战演练——桌面迷你番茄钟Day4…

深度学习之“缺失数据处理”

缺失值检测 缺失数据就是我们没有的数据。如果数据集是由向量表示的特征组成&#xff0c;那么缺失值可能表现为某些样本的一个或多个特征因为某些原因而没有测量的值。通常情况下&#xff0c;缺失值由特殊的编码方式。如果正常值都是正数&#xff0c;那么缺失值可能被标记为-1…

日志收集Day007

1.配置ES集群TLS认证: (1)elk101节点生成证书文件 cd /usr/share/elasticsearch ./bin/elasticsearch-certutil cert -out config/elastic-certificates.p12 -pass "" --days 3650 (2)elk101节点为证书文件修改属主和属组 chown elasticsearch:elasticsearch con…

arm-linux-gnueabihf安装

Linaro Releases windows下打开wsl2中的ubuntu&#xff0c;资源管理器中输入&#xff1a; \\wsl$gcc-linaro-4.9.4-2017.01-x86_64_arm-linux-gnueabihf.tar.xz 复制到/home/ark01/tool 在 Ubuntu 中创建目录&#xff1a; /usr/local/arm&#xff0c;命令如下&#xff1a; …

LabVIEW透镜多参数自动检测系统

在现代制造业中&#xff0c;提升产品质量检测的自动化水平是提高生产效率和准确性的关键。本文介绍了一个基于LabVIEW的透镜多参数自动检测系统&#xff0c;该系统能够在单一工位上完成透镜的多项质量参数检测&#xff0c;并实现透镜的自动搬运与分选&#xff0c;极大地提升了检…

【算法】动态规划专题① ——线性DP python

目录 引入简单实现稍加变形举一反三实战演练总结 引入 楼梯有个台阶&#xff0c;每次可以一步上1阶或2阶。一共有多少种不同的上楼方法&#xff1f; 怎么去思考&#xff1f; 假设就只有1个台阶&#xff0c;走法只有&#xff1a;1 只有2台阶&#xff1a; 11&#xff0c;2 只有3台…

C++11(中)

新增默认成员函数 C11之前&#xff0c;默认成员函数有六个&#xff0c;构造函数&#xff0c;析构函数&#xff0c;拷贝构造&#xff0c;拷贝赋值重载&#xff0c;取地址重载&#xff0c;const 取地址重载。 C11增加了 移动构造 和 移动赋值重载 如果类没有实现移动构造&…

强化学习笔记——4策略迭代、值迭代、TD算法

基于策略迭代的贝尔曼方程和基于值迭代的贝尔曼方程&#xff0c;关系还是不太理解 首先梳理一下&#xff1a; 通过贝尔曼方程将强化学习转化为值迭代和策略迭代两种问题 求解上述两种贝尔曼方程有三种方法&#xff1a;DP&#xff08;有模型&#xff09;&#xff0c;MC&#xff…

计算机网络 笔记 网络层 3

IPv6 IPv6 是互联网协议第 6 版&#xff08;Internet Protocol Version 6&#xff09;的缩写&#xff0c;它是下一代互联网协议&#xff0c;旨在解决 IPv4 面临的一些问题&#xff0c;以下是关于 IPv6 的详细介绍&#xff1a; 产生背景&#xff1a; 随着互联网的迅速发展&…

【搜索回溯算法篇】:拓宽算法视野--BFS如何解决拓扑排序问题

✨感谢您阅读本篇文章&#xff0c;文章内容是个人学习笔记的整理&#xff0c;如果哪里有误的话还请您指正噢✨ ✨ 个人主页&#xff1a;余辉zmh–CSDN博客 ✨ 文章所属专栏&#xff1a;搜索回溯算法篇–CSDN博客 文章目录 一.广度优先搜索&#xff08;BFS&#xff09;解决拓扑排…

23.Word:小王-制作公司战略规划文档❗【5】

目录 NO1.2.3.4 NO5.6​ NO7.8.9​ NO10.11​ NO12​ NO13.14 NO1.2.3.4 布局→页面设置对话框→纸张&#xff1a;纸张大小&#xff1a;宽度/高度→页边距&#xff1a;上下左右→版式&#xff1a;页眉页脚→文档网格&#xff1a;勾选只指定行网格✔→ 每页&#xff1a;…

视频脚本生成器(基于openai API和streamlit)

utils.py&#xff1a; # 所有和ai交互的代码放进utils.py里&#xff08;utils 通常是 “utilities” 的缩写&#xff0c;意为 “实用工具” 或 “实用函数”&#xff09;from langchain.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI from lan…

Android --- CameraX讲解

预备知识 surface surfaceView SurfaceHolder surface 是什么&#xff1f; 一句话来说&#xff1a; surface是一块用于填充图像数据的内存。 surfaceView 是什么&#xff1f; 它是一个显示surface 的View。 在app中仍在 ViewHierachy 中&#xff0c;但在wms 中可以理解为…

Longformer:处理长文档的Transformer模型

Longformer&#xff1a;处理长文档的Transformer模型 摘要 基于Transformer的模型由于自注意力操作的二次复杂度&#xff0c;无法处理长序列。为了解决这一限制&#xff0c;我们引入了Longformer&#xff0c;其注意力机制与序列长度呈线性关系&#xff0c;使其能够轻松处理数…

python学opencv|读取图像(五十二)使用cv.matchTemplate()函数实现最佳图像匹配

【1】引言 前序学习了图像的常规读取和基本按位操作技巧&#xff0c;相关文章包括且不限于&#xff1a; python学opencv|读取图像-CSDN博客 python学opencv|读取图像&#xff08;四十九&#xff09;原理探究&#xff1a;使用cv2.bitwise()系列函数实现图像按位运算-CSDN博客…