【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.25 视觉风暴:NumPy驱动数据可视化

在这里插入图片描述

1.25 视觉风暴:NumPy驱动数据可视化

目录

视觉风暴:NumPy驱动数据可视化
百万级点云实时渲染优化
CT医学影像三维重建实战
交互式数据分析看板开发
地理空间数据可视化进阶
WebAssembly前端渲染融合

1.25.1 百万级点云实时渲染优化
1.25.2 CT医学影像三维重建实战
1.25.3 交互式数据分析看板开发
1.25.4 地理空间数据可视化进阶
1.25.5 WebAssembly前端渲染融合

视觉风暴:NumPy驱动数据可视化
大规模散点图优化
CT三维重建
交互式仪表盘
地理信息可视化
数据分块
降采样策略
GPU加速
DICOM处理
体绘制算法
等值面提取
Panel框架
动态更新
参数联动
投影转换
Shapefile处理
热力图生成

1.25.1 百万级点云实时渲染优化

核心痛点分析

Matplotlib默认渲染器处理百万级散点图时会出现:

  • 内存占用超过4GB
  • 帧率低于5FPS
  • 图像模糊失真

优化方案架构

原始数据
数据分块
可见区域检测
动态LOD降采样
WebGL渲染

代码实现

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm# 生成测试数据(100万点)
np.random.seed(42)
x = np.random.normal(size=1_000_000)
y = x * 0.3 + np.random.normal(scale=0.1, size=1_000_000)
z = np.sqrt(x**2 + y**2)# 分块处理函数
def chunk_render(data, chunks=100):fig = plt.figure(figsize=(10,6))ax = fig.add_subplot(111)# 创建颜色映射cmap = plt.cm.get_cmap('viridis')# 数据分块chunk_size = len(data) // chunksfor i in range(chunks):chunk = data[i*chunk_size : (i+1)*chunk_size]# 动态计算颜色和尺寸colors = cmap(z[i*chunk_size : (i+1)*chunk_size]/z.max())sizes = 10 * (z[i*chunk_size : (i+1)*chunk_size] - z.min()) / z.ptp()# 增量绘制ax.scatter(chunk[:,0], chunk[:,1], c=colors, s=sizes, edgecolors='none', alpha=0.6, marker='o', rasterized=True)  # 关键优化参数plt.colorbar(ax.collections[0], label='Intensity')plt.tight_layout()return fig# 执行分块渲染
data = np.column_stack([x, y])
fig = chunk_render(data)
plt.show()

1.25.2 CT医学影像三维重建实战

体绘制原理

三维数据场的可视化通过光线投射算法实现:

I ( x , y ) = ∑ t = 0 T C ( t ) ⋅ α ( t ) ⋅ ∏ i = 0 t − 1 ( 1 − α ( i ) ) I(x,y) = \sum_{t=0}^{T} C(t)\cdot \alpha(t)\cdot \prod_{i=0}^{t-1}(1-\alpha(i)) I(x,y)=t=0TC(t)α(t)i=0t1(1α(i))

DICOM数据处理

import pydicom
import numpy as np
from mayavi import mlabdef load_dicom_series(directory):slices = [pydicom.dcm_read(f) for f in sorted(os.listdir(directory))]slices.sort(key=lambda x: float(x.ImagePositionPatient[2]))# 构建三维数组volume = np.stack([s.pixel_array for s in slices])volume = volume.astype(np.float32)# 标准化处理volume = (volume - volume.min()) / (volume.max() - volume.min())return volume# 可视化函数
def render_volume(vol, threshold=0.3):mlab.figure(size=(800,600))src = mlab.pipeline.scalar_field(vol)# 设置透明度函数vol = mlab.pipeline.volume(src, vmin=0.1*vol.max(), vmax=0.8*vol.max())# 调整颜色映射vol._volume_property.shade = Truevol._volume_property.ambient = 0.4vol.update_ctf = Truemlab.view(azimuth=45, elevation=60)mlab.show()# 执行三维重建
ct_volume = load_dicom_series('./CT_scans/')
render_volume(ct_volume)

1.25.3 交互式数据分析看板开发

Panel核心组件架构

Dashboard
+data_cache: dict
+load_data()
+create_widgets()
+update_plots()
DataSource
PlotPane
ControlPanel

完整示例代码

import panel as pn
import numpy as np
import holoviews as hv
from holoviews import optspn.extension()
hv.extension('bokeh')class DataDashboard:def __init__(self):self.data = np.random.randn(1000, 2)self.sigma = pn.widgets.FloatSlider(name='Sigma', start=0.1, end=2.0, value=1.0)self.bins = pn.widgets.IntSlider(name='Bins', start=5, end=50, value=20)self.plot_pane = pn.pane.HoloViews()self.control_panel = pn.Column(self.sigma, self.bins)# 绑定事件self.sigma.param.watch(self.update_plot, 'value')self.bins.param.watch(self.update_plot, 'value')def update_plot(self, event):# 生成核密度估计xs = np.linspace(-4, 4, 100)ys = np.exp(-xs**2/(2*self.sigma.value**2)) curve = hv.Curve((xs, ys)).opts(color='red', line_width=2)# 生成直方图hist = hv.Histogram(np.histogram(self.data[:,0], bins=self.bins.value))# 组合绘图overlay = (hist * curve).opts(opts.Histogram(alpha=0.5, color='blue'),opts.Curve(title=f"Sigma={self.sigma.value:.2f}"))self.plot_pane.object = overlaydef view(self):return pn.Row(self.control_panel, self.plot_pane)# 启动仪表盘
dashboard = DataDashboard()
dashboard.view().servable()

1.25.4 地理空间数据可视化进阶

坐标系转换数学原理

从WGS84到Web墨卡托投影:

x = R ⋅ λ y = R ⋅ ln ⁡ [ tan ⁡ ( π 4 + ϕ 2 ) ] x = R \cdot \lambda \\ y = R \cdot \ln[\tan(\frac{\pi}{4} + \frac{\phi}{2})] x=Rλy=Rln[tan(4π+2ϕ)]

地理数据处理示例

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np# 生成测试数据
lons = np.random.uniform(-180, 180, 5000)
lats = np.random.uniform(-90, 90, 5000)
values = np.sin(np.radians(lats)) * np.cos(np.radians(lons))# 创建地图
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())# 绘制热力图
sc = ax.scatter(lons, lats, c=values, cmap='jet', s=10, transform=ccrs.PlateCarree(),alpha=0.7, edgecolors='none')# 添加地理要素
ax.coastlines(resolution='50m')
ax.add_feature(cartopy.feature.OCEAN, zorder=0)
ax.add_feature(cartopy.feature.LAND, edgecolor='black')
ax.gridlines()# 添加颜色条
plt.colorbar(sc, ax=ax, label='Value Intensity',orientation='horizontal', pad=0.05)
plt.title('Geospatial Data Visualization')
plt.show()

参考文献

名称链接
Matplotlib优化指南https://matplotlib.org/stable/tutorials/advanced/blitting.html
VTK体绘制文档https://vtk.org/documentation/
Panel官方教程https://panel.holoviz.org/user_guide/Components.html
Cartopy地理处理https://scitools.org.uk/cartopy/docs/latest/
WebGL渲染原理https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
DICOM标准文档https://www.dicomstandard.org/current/
NumPy性能优化https://numpy.org/doc/stable/user/c-info.ufunc-tutorial.html
地理投影数学https://mathworld.wolfram.com/MercatorProjection.html
医学影像处理https://radiopaedia.org/articles/dicom-file-format
WebAssembly与Pythonhttps://emscripten.org/docs/porting/connecting_cpp_and_javascript/Interacting-with-code.html

这篇文章包含了详细的原理介绍、代码示例、源码注释以及案例等。希望这对您有帮助。如果有任何问题请随私信或评论告诉我。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/894131.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

指针(C语言)从0到1掌握指针,为后续学习c++打下基础

目录 一,指针 二,内存地址和指针 1,什么是内存地址 2,指针在不同系统下所占内存 三,指针的声明和初始化以及类型 1,指针的声明 2,指针 的初始化 1, 初始化方式优点及适用场景 4,指针的声明初始化类型…

【已解决】windows7虚拟机安装VMtools频繁报错

为了在虚拟机VMware中安装win7,题主先在网上下载了windows7 professional版本的镜像,在vmware中安装vmtools时报错,信息如下 (安装程序无法继续,本程序需要您将此虚拟机上安装的操作系统更新到SP1) 然后就…

单词翻转(信息学奥赛一本通1144)

题目来源 信息学奥赛一本通(C版)在线评测系统 题目描述 1144:单词翻转 时间限制: 1000 ms 内存限制: 65536 KB 提交数:60098 通过数: 26099 【题目描述】 输入一个句子(一行),将句子中的每一个单词翻转后输出。 【输入…

从0到1:C++ 开启游戏开发奇幻之旅(二)

目录 游戏开发核心组件设计 游戏循环 游戏对象管理 碰撞检测 人工智能(AI) 与物理引擎 人工智能 物理引擎 性能优化技巧 内存管理优化 多线程处理 实战案例:开发一个简单的 2D 射击游戏 项目结构设计 代码实现 总结与展望 游戏…

【Block总结】DynamicFilter,动态滤波器降低计算复杂度,替换传统的MHSA|即插即用

论文信息 标题: FFT-based Dynamic Token Mixer for Vision 论文链接: https://arxiv.org/pdf/2303.03932 关键词: 深度学习、计算机视觉、对象检测、分割 GitHub链接: https://github.com/okojoalg/dfformer 创新点 本论文提出了一种新的标记混合器(token mix…

(done) MIT6.S081 2023 学习笔记 (Day6: LAB5 COW Fork)

网页:https://pdos.csail.mit.edu/6.S081/2023/labs/cow.html 任务1:Implement copy-on-write fork(hard) (完成) 现实中的问题如下: xv6中的fork()系统调用会将父进程的用户空间内存全部复制到子进程中。如果父进程很大,复制过程…

鸢尾花书01---基本介绍和Jupyterlab的上手

文章目录 1.致谢和推荐2.py和.ipynb区别3.Jupyterlab的上手3.1入口3.2页面展示3.3相关键介绍3.4代码的运行3.5重命名3.6latex和markdown说明 1.致谢和推荐 这个系列是关于一套书籍,结合了python和数学,机器学习等等相关的理论,总结的7本书籍…

【愚公系列】《循序渐进Vue.js 3.x前端开发实践》033-响应式编程的原理及在Vue中的应用

标题详情作者简介愚公搬代码头衔华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主&…

【javaweb项目idea版】蛋糕商城(可复用成其他商城项目)

该项目虽然是蛋糕商城项目,但是可以复用成其他商城项目或者购物车项目 想要源码的uu可点赞后私聊 技术栈 主要为:javawebservletmvcc3p0idea运行 功能模块 主要分为用户模块和后台管理员模块 具有商城购物的完整功能 基础模块 登录注册个人信息编辑…

为什么LabVIEW适合软硬件结合的项目?

LabVIEW是一种基于图形化编程的开发平台,广泛应用于软硬件结合的项目中。其强大的硬件接口支持、实时数据采集能力、并行处理能力和直观的用户界面,使得它成为工业控制、仪器仪表、自动化测试等领域中软硬件系统集成的理想选择。LabVIEW的设计哲学强调模…

Fort Firewall:全方位守护网络安全

Fort Firewall是一款专为 Windows 操作系统设计的开源防火墙工具,旨在为用户提供全面的网络安全保护。它基于 Windows 过滤平台(WFP),能够与系统无缝集成,确保高效的网络流量管理和安全防护。该软件支持实时监控网络流…

【PyTorch】6.张量形状操作:在深度学习的 “魔方” 里,玩转张量形状

目录 1. reshape 函数的用法 2. transpose 和 permute 函数的使用 4. squeeze 和 unsqueeze 函数的用法 5. 小节 个人主页:Icomi 专栏地址:PyTorch入门 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架&am…

[STM32 - 野火] - - - 固件库学习笔记 - - -十三.高级定时器

一、高级定时器简介 高级定时器的简介在前面一章已经介绍过,可以点击下面链接了解,在这里进行一些补充。 [STM32 - 野火] - - - 固件库学习笔记 - - -十二.基本定时器 1.1 功能简介 1、高级定时器可以向上/向下/两边计数,还独有一个重复计…

Cyber Security 101-Build Your Cyber Security Career-Security Principles(安全原则)

了解安全三元组以及常见的安全模型和原则。 任务1:介绍 安全已成为一个流行词;每家公司都想声称其产品或服务是安全的。但事实真的如此吗? 在我们开始讨论不同的安全原则之前,了解我们正在保护资产的对手至关重要。您是否试图阻止蹒跚学步…

python:斐索实验(Fizeau experiment)

斐索实验(Fizeau experiment)是在1851年由法国物理学家阿曼德斐索(Armand Fizeau)进行的一项重要实验,旨在测量光在移动介质中的传播速度。这项实验的结果对当时的物理理论产生了深远的影响,并且在后来的相…

青少年CTF练习平台 贪吃蛇

题目 CtrlU快捷键查看页面源代码 源码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>贪吃蛇游戏</title><style>#gameCanvas {border: 1px solid black;}</style> </head>…

芯片AI深度实战:基础篇之Ollama

有这么多大模型&#xff0c;怎么本地用&#xff1f; Ollama可以解决这一问题。不依赖GPU&#xff0c;也不需要编程。就可以在CPU上运行自己的大模型。 软件甚至不用安装&#xff0c;直接在ollama官网下载可执行文件即可。 现在最流行的deepseek-r1也可以使用。当然还有我认为最…

本地部署deepseek模型步骤

文章目录 0.deepseek简介1.安装ollama软件2.配置合适的deepseek模型3.安装chatbox可视化 0.deepseek简介 DeepSeek 是一家专注于人工智能技术研发的公司&#xff0c;致力于打造高性能、低成本的 AI 模型&#xff0c;其目标是让 AI 技术更加普惠&#xff0c;让更多人能够用上强…

DeepSeek R1中提到“知识蒸馏”到底是什么

在 DeepSeek-R1 中&#xff0c;知识蒸馏&#xff08;Knowledge Distillation&#xff09;是实现模型高效压缩与性能优化的核心技术之一。在DeepSeek的论文中&#xff0c;使用 DeepSeek-R1&#xff08;教师模型&#xff09;生成 800K 高质量训练样本&#xff0c;涵盖数学、编程、…

关联传播和 Python 和 Scikit-learn 实现

文章目录 一、说明二、什么是 Affinity Propagation。2.1 先说Affinity 传播的工作原理2.2 更多细节2.3 传播两种类型的消息2.4 计算责任和可用性的分数2.4.1 责任2.4.2 可用性分解2.4.3 更新分数&#xff1a;集群是如何形成的2.4.4 估计集群本身的数量。 三、亲和力传播的一些…