【现代深度学习技术】深度学习计算 | 参数管理

在这里插入图片描述

【作者主页】Francek Chen
【专栏介绍】 ⌈ ⌈ PyTorch深度学习 ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据分析、科学探索等领域都取得了很多成果。本专栏介绍基于PyTorch的深度学习算法实现。
【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/PyTorch_deep_learning。

文章目录

    • 一、参数访问
      • (一)目标参数
      • (二)一次性访问所有参数
      • (三)从嵌套块收集参数
    • 二、参数初始化
      • (一)内置初始化
      • (二)自定义初始化
    • 三、参数绑定
    • 小结


  在选择了架构并设置了超参数后,我们就进入了训练阶段。此时,我们的目标是找到使损失函数最小化的模型参数值。经过训练后,我们将需要使用这些参数来做出未来的预测。此外,有时我们希望提取参数,以便在其他环境中复用它们,将模型保存下来,以便它可以在其他软件中执行,或者为了获得科学的理解而进行检查。

  之前的介绍中,我们只依靠深度学习框架来完成训练的工作,而忽略了操作参数的具体细节。本节,我们将介绍以下内容:

  • 访问参数,用于调试、诊断和可视化;
  • 参数初始化;
  • 在不同模型组件间共享参数。

  我们首先看一下具有单隐藏层的多层感知机。

import torch
from torch import nnnet = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)

在这里插入图片描述

一、参数访问

  我们从已有模型中访问参数。当通过Sequential类定义模型时,我们可以通过索引来访问模型的任意层。这就像模型是一个列表一样,每层的参数都在其属性中。如下所示,我们可以检查第二个全连接层的参数。

print(net[2].state_dict())

在这里插入图片描述

  输出的结果告诉我们一些重要的事情:首先,这个全连接层包含两个参数,分别是该层的权重和偏置。两者都存储为单精度浮点数(float32)。注意,参数名称允许唯一标识每个参数,即使在包含数百个层的网络中也是如此。

(一)目标参数

  注意,每个参数都表示为参数类的一个实例。要对参数执行任何操作,首先我们需要访问底层的数值。有几种方法可以做到这一点。有些比较简单,而另一些则比较通用。下面的代码从第二个全连接层(即第三个神经网络层)提取偏置,提取后返回的是一个参数类实例,并进一步访问该参数的值。

print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)

在这里插入图片描述

  参数是复合的对象,包含值、梯度和额外信息。这就是我们需要显式参数值的原因。除了值之外,我们还可以访问每个参数的梯度。在上面这个网络中,由于我们还没有调用反向传播,所以参数的梯度处于初始状态。

net[2].weight.grad == None

在这里插入图片描述

(二)一次性访问所有参数

  当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦。当我们处理更复杂的块(例如,嵌套块)时,情况可能会变得特别复杂,因为我们需要递归整个树来提取每个子块的参数。下面,我们将通过演示来比较访问第一个全连接层的参数和访问所有层。

print(*[(name, param.shape) for name, param in net[0].named_parameters()])
print(*[(name, param.shape) for name, param in net.named_parameters()])

在这里插入图片描述

  这为我们提供了另一种访问网络参数的方式,如下所示。

net.state_dict()['2.bias'].data

在这里插入图片描述

(三)从嵌套块收集参数

  让我们看看,如果我们将多个块相互嵌套,参数命名约定是如何工作的。我们首先定义一个生成块的函数(可以说是“块工厂”),然后将这些块组合到更大的块中。

def block1():return nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 4), nn.ReLU())def block2():net = nn.Sequential()for i in range(4):# 在这里嵌套net.add_module(f'block {i}', block1())return netrgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)

在这里插入图片描述

  设计了网络后,我们看看它是如何工作的。

print(rgnet)

在这里插入图片描述

  因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。

rgnet[0][1][0].bias.data

在这里插入图片描述

二、参数初始化

  知道了如何访问参数后,现在我们看看如何正确地初始化参数。我们在【深度学习基础】多层感知机 | 数值稳定性和模型初始化 中讨论了良好初始化的必要性。深度学习框架提供默认随机初始化,也允许我们创建自定义初始化方法,满足我们通过其他规则实现初始化权重。

  默认情况下,PyTorch会根据一个范围均匀地初始化权重和偏置矩阵,这个范围是根据输入和输出维度计算出的。PyTorch的nn.init模块提供了多种预置初始化方法。

(一)内置初始化

  让我们首先调用内置的初始化器。下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量,且将偏置参数设置为0。

def init_normal(m):if type(m) == nn.Linear:nn.init.normal_(m.weight, mean=0, std=0.01)nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]

在这里插入图片描述

  我们还可以将所有参数初始化为给定的常数,比如初始化为1。

def init_constant(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 1)nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]

在这里插入图片描述

  我们还可以对某些块应用不同的初始化方法。例如,下面我们使用Xavier初始化方法初始化第一个神经网络层,然后将第三个神经网络层初始化为常量值42。

def init_xavier(m):if type(m) == nn.Linear:nn.init.xavier_uniform_(m.weight)
def init_42(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 42)net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)

在这里插入图片描述

(二)自定义初始化

  有时,深度学习框架没有提供我们需要的初始化方法。在下面的例子中,我们使用以下的分布为任意权重参数 w w w定义初始化方法:

w ∼ { U ( 5 , 10 ) 可能性  1 4 0 可能性  1 2 U ( − 10 , − 5 ) 可能性  1 4 (1) \begin{aligned} w \sim \begin{cases} U(5, 10) & \text{ 可能性 } \frac{1}{4} \\ 0 & \text{ 可能性 } \frac{1}{2} \\ U(-10, -5) & \text{ 可能性 } \frac{1}{4} \end{cases} \end{aligned} \tag{1} w U(5,10)0U(10,5) 可能性 41 可能性 21 可能性 41(1)

  同样,我们实现了一个my_init函数来应用到net

def my_init(m):if type(m) == nn.Linear:print("Init", *[(name, param.shape) for name, param in m.named_parameters()][0])nn.init.uniform_(m.weight, -10, 10)m.weight.data *= m.weight.data.abs() >= 5net.apply(my_init)
net[0].weight[:2]

在这里插入图片描述

  注意,我们始终可以直接设置参数。

net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]

在这里插入图片描述

三、参数绑定

  有时我们希望在多个层间共享参数:我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。

# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), shared, nn.ReLU(),shared, nn.ReLU(), nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])

在这里插入图片描述

  这个例子表明第三个和第五个神经网络层的参数是绑定的。它们不仅值相等,而且由相同的张量表示。因此,如果我们改变其中一个参数,另一个参数也会改变。这里有一个问题:当参数绑定时,梯度会发生什么情况?答案是由于模型参数包含梯度,因此在反向传播期间第二个隐藏层(即第三个神经网络层)和第三个隐藏层(即第五个神经网络层)的梯度会加在一起。

小结

  • 我们有几种方法可以访问、初始化和绑定模型参数。
  • 我们可以使用自定义初始化方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/893971.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言,无法正常释放char*的空间

问题描述 #include <stdio.h> #include <stdio.h>const int STRSIZR 10;int main() {char *str (char *)malloc(STRSIZR*sizeof(char));str "string";printf("%s\n", str);free(str); } 乍一看&#xff0c;这块代码没有什么问题。直接书写…

【开源免费】基于Vue和SpringBoot的在线文档管理系统(附论文)

本文项目编号 T 038 &#xff0c;文末自助获取源码 \color{red}{T038&#xff0c;文末自助获取源码} T038&#xff0c;文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析 六、核心代码6.1 查…

忘记宝塔的访问地址怎么找

在linux中安装宝塔面板后会生成网址、账号和密码 如果网址忘记了那将进不去宝塔面板该怎么办呢&#xff1f; bt命令 我们输入 bt 命令的时候&#xff0c;是在根目录里面进行操作的。 / bt 我们根据自己的需要&#xff0c;选择对应的数字就可以了。 bt 14 输入 14 查看面板默…

力扣hot100-->滑动窗口、贪心

你好呀&#xff0c;欢迎来到 Dong雨 的技术小栈 &#x1f331; 在这里&#xff0c;我们一同探索代码的奥秘&#xff0c;感受技术的魅力 ✨。 &#x1f449; 我的小世界&#xff1a;Dong雨 &#x1f4cc; 分享我的学习旅程 &#x1f6e0;️ 提供贴心的实用工具 &#x1f4a1; 记…

【蓝桥杯嵌入式入门与进阶】2.与开发板之间破冰:初始开发板和原理图2

个人主页&#xff1a;Icomi 专栏地址&#xff1a;蓝桥杯嵌入式组入门与进阶 大家好&#xff0c;我是一颗米&#xff0c;本篇专栏旨在帮助大家从0开始入门蓝桥杯并且进阶&#xff0c;若对本系列文章感兴趣&#xff0c;欢迎订阅我的专栏&#xff0c;我将持续更新&#xff0c;祝你…

Spring Boot - 数据库集成02 - 集成JPA

集成JPA 文章目录 集成JPA一&#xff1a;JPA概述1&#xff1a;JPA & JDBC2&#xff1a;JPA规范3&#xff1a;JPA的状态和转换关系 二&#xff1a;Spring data JPA1&#xff1a;JPA_repository1.1&#xff1a;CurdRepostory<T, ID>1.2&#xff1a;PagingAndSortingRep…

从ai产品推荐到利用cursor快速掌握一个开源项目再到langchain手搓一个Text2Sql agent

目录 0. 经验分享&#xff1a;产品推荐 1. 经验分享&#xff1a;提示词优化 2. 经验分享&#xff1a;使用cursor 阅读一篇文章 3. 经验分享&#xff1a;使用cursor 阅读一个完全陌生的开源项目 4. 经验分享&#xff1a;手搓一个text2sql agent &#xff08;使用langchain l…

【Java-数据结构】Java 链表面试题下 “最后一公里”:解决复杂链表问题的致胜法宝

我的个人主页 我的专栏&#xff1a;Java-数据结构&#xff0c;希望能帮助到大家&#xff01;&#xff01;&#xff01;点赞❤ 收藏❤ 引言&#xff1a; Java链表&#xff0c;看似简单的链式结构&#xff0c;却蕴含着诸多有趣的特性与奥秘&#xff0c;等待我们去挖掘。它就像一…

智慧园区系统的类型及其在企业管理效率提升中的关键作用解析

内容概要 在智慧园区的建设中&#xff0c;各类系统的采用是提升管理效率的关键所在。快鲸智慧园区(楼宇)管理系统&#xff0c;通过其全面数字化的管理手段&#xff0c;已经成为了企业管理的新标杆。这一系统能够有效整合租赁管理、资产管理、招商管理和物业管理等功能&#xf…

多级缓存(亿级并发解决方案)

多级缓存&#xff08;亿级流量&#xff08;并发&#xff09;的缓存方案&#xff09; 传统缓存的问题 传统缓存是请求到达tomcat后&#xff0c;先查询redis&#xff0c;如果未命中则查询数据库&#xff0c;问题如下&#xff1a; &#xff08;1&#xff09;请求要经过tomcat处…

第27篇 基于ARM A9处理器用C语言实现中断<三>

Q&#xff1a;基于ARM A9处理器怎样设计C语言工程&#xff0c;同时使用按键中断和定时器中断在红色LED上计数&#xff1f; A&#xff1a;基本原理&#xff1a;设置HPS Timer 0和按键中断源&#xff0c;主程序调用set_A9_IRQ_stack( )函数设置中断模式的ARM堆栈指针&#xff0c…

C++ 中用于控制输出格式的操纵符——setw 、setfill、setprecision、fixed

目录 四种操纵符简要介绍 setprecision基本用法 setfill的基本用法 fixed的基本用法 setw基本用法 以下是一些常见的用法和示例&#xff1a; 1. 设置字段宽度和填充字符 2. 设置字段宽度和对齐方式 3. 设置字段宽度和精度 4. 设置字段宽度和填充字符&#xff0c;结合…

【1.安装ubuntu22.04】

目录 参考文章链接电脑参数安装过程准备查看/更改引导方式查看/更改磁盘的分区格式关闭BitLocker加密压缩分区关闭独显直连制作Ubuntu安装盘下载镜像制作启动盘 进入BIOS模式进行设置Secure Boot引导项顺序try or install ubuntu 进入安装分区启动引导器个人信息和重启 参考文章…

代码随想录算法【Day34】

Day34 62.不同路径 思路 第一种&#xff1a;深搜 -> 超时 第二种&#xff1a;动态规划 第三种&#xff1a;数论 动态规划代码如下&#xff1a; class Solution { public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m, vector<int>(n,…

计算机毕业设计PySpark+hive招聘推荐系统 职位用户画像推荐系统 招聘数据分析 招聘爬虫 数据仓库 Django Vue.js Hadoop

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…

强化学习数学原理(三)——迭代算法

一、值迭代过程 上面是贝尔曼最优公式&#xff0c;之前我们说过&#xff0c;f(v)v&#xff0c;贝尔曼公式是满足contraction mapping theorem的&#xff0c;能够求解除它最优的策略和最优的state value&#xff0c;我们需要通过一个最优v*&#xff0c;这个v*来计算状态pi*&…

AI 浪潮席卷中国年,开启科技新春新纪元

在这博主提前祝大家蛇年快乐呀&#xff01;&#xff01;&#xff01; 随着人工智能&#xff08;AI&#xff09;技术的飞速发展&#xff0c;其影响力已经渗透到社会生活的方方面面。在中国传统节日 —— 春节期间&#xff0c;AI 技术也展现出了巨大的潜力&#xff0c;为中国年带…

vim的特殊模式-可视化模式

可视化模式&#xff1a;按 v进入可视化模式 选中 y复制 d剪切/删除 可视化块模式: ctrlv 选中 y复制 d剪切/删除 示例&#xff1a; &#xff08;vim可视化模式的进阶使用&#xff1a;vim可视化模式的进阶操作-CSDN博客&#xff09;

sunrays-framework配置重构

文章目录 1.common-log4j2-starter1.目录结构2.Log4j2Properties.java 新增两个属性3.Log4j2AutoConfiguration.java 条件注入LogAspect4.ApplicationEnvironmentPreparedListener.java 从Log4j2Properties.java中定义的配置读取信息 2.common-minio-starter1.MinioProperties.…

相互作用感知的蛋白-小分子对接模型 - Interformer 评测

Interformer 是一个应用于分子对接和亲和力预测的深度学习模型&#xff0c;基于 Graph-Transdormer 架构的模型&#xff0c;利用相互作用&#xff08;氢键、疏水&#xff09;感知的混合密度网络&#xff08;interaction-aware mixture den sity network&#xff0c; MDN&#x…