1.背景
为了实现低延时,所以开始看看C版本的rknn的使用,确实有不足的地方,请指正(代码借鉴了rk官方的仓库文件)。
2.基本的操作流程
1.读取模型初始化
// ======================= 设置基本信息 ===================// 在postprocess.h文件中定义,详见include/postprocess.h文件const float nms_threshold = NMS_THRESH; // 默认的NMS阈值const float box_conf_threshold = BOX_THRESH; // 默认的置信度阈值// 默认的模型输入输出信息letterbox,默认使用LetterBox的预处理std::string option = "letterbox";// 默认的图片输出路径,根据路径设置std::string out_path = "/home/ubuntu/unet/unet_rknn_c++/rknn_api_test/result/out.png";// 默认的模型路径,根据路径设置const char model_path[] = "../weights/yolov5s-640-640.rknn";// ======================= 设置rknn模型的基本信息 ===================//初始化rknn_context对象,数据类型:rknn_context,成员变量:ctxrknn_context ctx = 0;int ret;// RKNN模型的二进制数据或者RKNN模型路径。当参数size大于0时,model表示二进制数据;当参数size等于0时,model表示RKNN模型路径。int model_len = 0;unsigned char *model;// ======================= 初始化RKNN模型 ===================model = load_model(model_path, &model_len);ret = rknn_init(&ctx, model, model_len, 0, NULL);if (ret < 0){printf("rknn_init fail! ret=%d\n", ret);return -1;}else{printf("model load success\n");}if (ctx == 0){printf("rknn_init fail! ret=%d\n", ret);return -1;}rknn_core_mask core_mask = RKNN_NPU_CORE_0_1_2;ret = rknn_set_core_mask(ctx, core_mask);
2.获取输入和输出的相关信息
// ======================= SDK的版本信息 ===================rknn_sdk_version version;ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &version, sizeof(rknn_sdk_version));if (ret < 0){printf("rknn_init error ret=%d\n", ret);return -1;}printf("sdk version: %s driver version: %s\n", version.api_version, version.drv_version);// ======================= 获取模型输入输出信息 ===================/*调佣rknn_query接口查询tensor输入输出个数*/rknn_input_output_num io_num;ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));if (ret != RKNN_SUCC){printf("rknn_query fail! ret=%d\n", ret);return -1;}printf("model input num:%d,output num:%d\n",io_num.n_input,io_num.n_output);// =======================结构体rknn_tensor_attr表示模型的tensor的属性 ===================// (1)input的tensor信息rknn_tensor_attr input_attrs[io_num.n_input];memset(input_attrs, 0, sizeof(input_attrs));for (int i = 0; i < io_num.n_input; i++){input_attrs[i].index = i;ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));if (ret < 0){printf("rknn_init error ret=%d\n", ret);return -1;}dump_tensor_attr(&(input_attrs[i]));}//(2)output的tensor信息rknn_tensor_attr output_attrs[io_num.n_output];memset(output_attrs, 0, sizeof(output_attrs));for (int i = 0; i < io_num.n_output; i++){output_attrs[i].index = i;ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));dump_tensor_attr(&(output_attrs[i]));}
3.设置输入格式
// 查看模型的输入格式NCHW或者NHWC,获取输入的宽高和通道数int channel = 3;int width = 0;int height = 0;if (input_attrs[0].fmt == RKNN_TENSOR_NCHW){printf("model is NCHW input fmt\n");channel = input_attrs[0].dims[1];height = input_attrs[0].dims[2];width = input_attrs[0].dims[3];}else{printf("model is NHWC input fmt\n");height = input_attrs[0].dims[1];width = input_attrs[0].dims[2];channel = input_attrs[0].dims[3];}printf("model input height=%d, width=%d, channel=%d\n", height, width, channel);// ======================= 设置模型输入 ===================// rknn_input 结构体,用于描述输入数据,包括索引、类型、大小、格式等。1表示输入的数量,可换成io_num.n_inputrknn_input inputs[1];memset(inputs, 0, sizeof(inputs));// 该输入的索引位置inputs[0].index = 0;// 输入数据的类型inputs[0].type = RKNN_TENSOR_UINT8;// 输入数据所占内存大小inputs[0].size = width * height * channel;// 输入数据的格式inputs[0].fmt = RKNN_TENSOR_NHWC;// 输入数据是否透传inputs[0].pass_through = 0;
4.读取图片进行预处理
string input_path= "../images/bus.jpg";// ======================= 读取图片 ===================printf("Read %s ...\n", input_path.c_str());cv::Mat orig_img = cv::imread(input_path, 1);if (!orig_img.data){printf("cv::imread %s fail!\n", input_path.c_str());return -1;}cv::Mat img;cv::cvtColor(orig_img, img, cv::COLOR_BGR2RGB);int img_width = img.cols;int img_height = img.rows;printf("img width = %d, img height = %d\n", img_width, img_height);// 这里去除了rga的操作,// 指定目标大小和预处理方式,默认使用LetterBox的预处理BOX_RECT pads;memset(&pads, 0, sizeof(BOX_RECT));cv::Size target_size(width, height);cv::Mat resized_img(target_size.height, target_size.width, CV_8UC3);// 计算缩放比例float scale_w = (float)target_size.width / img.cols;float scale_h = (float)target_size.height / img.rows;if (img_width != width || img_height != height) {if (option == "letterbox") {printf("resize image with letterbox\n");float min_scale = std::min(scale_w, scale_h);scale_w = min_scale;scale_h = min_scale;letterbox(img, resized_img, pads, min_scale, target_size);// 保存预处理图片cv::imwrite("letterbox_input.jpg", resized_img);} else {fprintf(stderr, "Invalid resize option. Use 'resize' or 'letterbox'.\n");return -1;}inputs[0].buf = resized_img.data;}else{inputs[0].buf = img.data;}
5.模型输入和推理
// 使用rknn_inputs_set函数设置模型输入ret = rknn_inputs_set(ctx, io_num.n_input, inputs);if (ret < 0){printf("rknn_input_set fail! ret=%d\n", ret);return -1;}// ======================= rknn模型推理 ===================printf("rknn_run\n");ret = rknn_run(ctx, nullptr);if (ret < 0){printf("rknn_run fail! ret=%d\n", ret);return -1;}
6.获取输出
// 多输出rknn_output outputs[io_num.n_output];memset(outputs, 0, sizeof(outputs));// 为每个输出设置属性,这里假设我们希望所有输出都转换为浮点数for (int i = 0; i < 3; ++i) {// want_float标识是否需要将输出数据转为float类型输出,0表示不需要,1表示需要outputs[i].want_float = 0;}// 使用rknn_outputs_get函数获取模型输出ret = rknn_outputs_get(ctx, 3, outputs, NULL);if (ret < 0) {printf("rknn_outputs_get fail! ret=%d\n", ret);return -1;}/***int8数据格式(int占用1字节),查看模型输出的shape: (1*255*80*80),(1*255*40*40),(1*255*40*40)output[0] shape: 1632000output[1] shape: 408000output[2] shape: 102000float数据格式(float占用4字节),查看模型输出的shape: (1*255*80*80),(1*255*40*40),(1*255*40*40)output[0] shape: 1632000*4output[1] shape: 408000*4output[2] shape: 102000*4***/
// int8_t *pblob[3];
// for (int i = 0; i < io_num.n_output; ++i)
// {
// cout << "output[" << i << "] shape: " << outputs[i].size << endl;
// pblob[i] = (int8_t*)outputs[i].buf;
// }
7.后处理
// 后处理detect_result_group_t detect_result_group;std::vector<float> out_scales;std::vector<int32_t> out_zps;// rknn量化的零点和缩放因子for (int i = 0; i < io_num.n_output; ++i){out_scales.push_back(output_attrs[i].scale);out_zps.push_back(output_attrs[i].zp);}// 后处理post_process((int8_t *)outputs[0].buf, (int8_t *)outputs[1].buf, (int8_t *)outputs[2].buf, height, width,box_conf_threshold, nms_threshold, pads, scale_w, scale_h, out_zps, out_scales, &detect_result_group);// 画框和概率char text[256];for (int i = 0; i < detect_result_group.count; i++){detect_result_t *det_result = &(detect_result_group.results[i]);sprintf(text, "%s %.1f%%", det_result->name, det_result->prop * 100);printf("%s @ (%d %d %d %d) %f\n", det_result->name, det_result->box.left, det_result->box.top,det_result->box.right, det_result->box.bottom, det_result->prop);int x1 = det_result->box.left;int y1 = det_result->box.top;int x2 = det_result->box.right;int y2 = det_result->box.bottom;rectangle(orig_img, cv::Point(x1, y1), cv::Point(x2, y2), cv::Scalar(256, 0, 0, 256), 3);putText(orig_img, text, cv::Point(x1, y1 + 12), cv::FONT_HERSHEY_SIMPLEX, 0.4, cv::Scalar(255, 255, 255));}imwrite(out_path, orig_img);printf("save detect result to %s\n", out_path.c_str());
8.资源释放
// 释放rknn_outputs_get函数得到的输出的相关资源ret = rknn_outputs_release(ctx, io_num.n_output, outputs);// 释放传入的rknn_context及其相关资源ret = rknn_destroy(ctx);if (model){free(model);}
3.后记
详细的内容我已经上传到yolov5-rk文件中,可以详细的研究