AIGC专栏18——EasyAnimateV5.1版本详解 应用Qwen2 VL作为文本编码器,支持轨迹控制与相机镜头控制

AIGC专栏18——EasyAnimateV5.1版本详解 应用Qwen2 VL作为文本编码器,支持轨迹控制与相机镜头控制

  • 学习前言
  • 相关地址汇总
    • 源码下载地址
    • HF测试链接
    • MS测试链接
  • 测试效果
    • Image to Video
    • Text to Video
    • 轨迹控制
    • 镜头控制
  • EasyAnimate详解
    • 技术储备
      • Qwen2 VL
      • Stable Diffusion 3
      • CogVideoX
    • 算法细节
      • 应用Qwen2 VL作为文本编码器
      • 支持轨迹控制,相机控制等新控制方式
      • 使用奖励算法最终优化性能
      • 使用Flow matching作为采样方式
  • 项目使用
    • ComfyUI启动
      • 安装
      • 将模型下载到`ComfyUI/models/EasyAnimate/`
      • 文本到视频生成
      • 图像到视频生成
      • 视频到视频生成
      • 镜头控制视频生成
      • 轨迹控制视频生成
      • 控制视频生成
    • WebUI启动
      • 文生视频
      • 图生视频
      • 视频生视频
      • 控制生视频

学习前言

在EasyAnimateV5中,我们将模型规模扩大到了12B,并使用了MMDiT结构。

参考最新的一些文生图与文生视频算法,我发现我们还有很多比较重要的tricks还没有使用,比如Flow采样器,比如使用大语言模型作为文本编码器,比如使用奖励模型等,我们将这些技巧都进行了应用,实现了EasyAnimateV5.1,性能相比之前也有比较大幅度的提升。
在这里插入图片描述

相关地址汇总

源码下载地址

https://github.com/aigc-apps/EasyAnimate

HF测试链接

https://huggingface.co/spaces/alibaba-pai/EasyAnimate

MS测试链接

https://modelscope.cn/studios/PAI/EasyAnimate
感谢大家的关注。

测试效果

Image to Video

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

Text to Video

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

轨迹控制

请添加图片描述

请添加图片描述

镜头控制

Pan Up
请添加图片描述
Pan Down
请添加图片描述
Pan Up + Pan Right
请添加图片描述
Pan Up + Pan Left
请添加图片描述

EasyAnimate详解

技术储备

Qwen2 VL

在这里插入图片描述

自2024年8月开源以来,Qwen2-VL模型在处理各种分辨率和长宽比的视觉理解任务上展现了顶尖性能。它在文档问答、信息问答、真实场景问答、多任务视觉问答,以及数学视觉理解等多项基准测试中取得了优异的成绩。Qwen2-VL模型引入了naive dynamic resolution技术,支持灵活处理不同分辨率的输入图像和视频,确保了在各种视觉理解任务中的卓越表现。它创新性地提出了多模态旋转位置编码(M-RoPE),这有助于实现更高效的跨模态信息融合,从而增强了模型对于文本和视觉数据的理解能力。

此外,Qwen2-VL构建了一个统一的图像和视频理解框架,其中图像被视作两个相同的帧来处理,以维持与视频处理逻辑的一致性,并采用3D tubes替代传统的2D patches方法,进一步提升了对长时间序列视觉内容的理解深度。这些改进显著提高了视频问答、对话系统以及内容创作等应用的质量。

在EasyAnimateV5.1中,我们使用Qwen2-VL作为Text encoder进行文本的编码。

Stable Diffusion 3

在这里插入图片描述
在2024年3月,Stability AI发布了Stable Diffusion 3,Stable Diffusion 3一个模型系列,参数量从 800M 到 8B 不等。相比于过去的Stable Diffusion,Stable Diffusion 3的生图质量更高,且更符合人类偏好。

Stable Diffusion 3做了多改进,比如文本信息注入的方式,DiT模型在最初引入文本时,通常使用Cross Attention的方法结合文本信息,如Pixart-α、hunyuan DiT等。Stable Diffusion 3通过Self-Attention引入文本信息。相比于Cross Attention,使用Self-Attention引入文本信息不仅节省了Cross Attention的参数量,还节省了Cross Attention的计算量。

Stable Diffusion 3还引入了RMS-Norm。,在每一个attention运算之前,对Q和K进行了RMS-Norm归一化,用于增强模型训练的稳定性。

同时使用了更大的VQGAN,VQGAN压缩得到的特征维度从原来的4维提升到16维等。

CogVideoX

在这里插入图片描述
2024年8月,智谱开源视频生成模型CogVideoX,先是2B模型,而后是5B模型,近期还开源了V1.5的模型,几个视频生成模型能力都非常强悍,极大的提高了视频开源模型的水准。

CogVideoX主要具有以下特点:

  • 自主研发了一套高效的三维变分自编码器结构(3D VAE)。降低了视频扩散生成模型的训练成本和难度。结合 3D RoPE 位置编码模块,该技术提升了在时间维度上对帧间关系的捕捉能力,从而建立了视频中的长期依赖关系。
  • 拓展视频模型规模到5B,提升了模型的理解能力,使得模型能够处理超长且复杂的 prompt 指令。
  • 模型与Stable Diffusion 3一致,将文本、时间、空间融合在一起,通过 Full Attention 机制优化模态间的交互效果。

算法细节

在EasyAnimateV5.1版本中,我们将原来的双text encoders替换成alibaba近期发布的Qwen2 VL,由于Qwen2 VL是一个多语言模型,EasyAnimateV5.1支持多语言预测,语言支持范围与Qwen2 VL挂钩,综合体验下来是中文英文最佳,同时还支持日语、韩语等语言的预测。

另外在文生视频、图生视频、视频生视频和通用控制的基础上,我们支持了轨迹控制与相机镜头控制,通过轨迹控制可以实现控制某一物体的具体的运动方向,通过相机镜头控制可以控制视频镜头的运动方向,组合多个镜头运动后,还可以往左上、左下等方向进行偏转。

对比EasyAnimateV5,EasyAnimateV5.1主要突出了以下特点:

  • 应用Qwen2 VL作为文本编码器,支持多语言预测;
  • 支持轨迹控制,相机控制等新控制方式;
  • 使用奖励算法最终优化性能;
  • 使用Flow作为采样方式;
  • 使用更多数据训练。

应用Qwen2 VL作为文本编码器

在MMDiT结构的基础上,我们将EasyAnimateV5的双text encoders替换成alibaba近期发布的Qwen2 VL;相比于CLIP与T5这样的传统编码模型,使用LLM作为Text Encoder慢慢在生成的圈子里流行起来,比如最近大火的HunyuanVideo模型。

尽管LLM的主力工作是生成,但对文本的编码与理解能力依然优秀,Qwen2 VL是多模态LLM中性能的佼佼者优越,对语义理解更加精准。而相比于Qwen2本身,Qwen2 VL由于和图像做过对齐,对图像内容的理解更为精确。

我们取出Qwen2 VL hidden_states的倒数第二个特征输入到MMDiT中,与视频Embedding一起做Self-Attention。在做Self-Attention前,由于大语言模型深层特征值一般较大(可以达到几万),我们为其做了一个RMSNorm进行数值的矫正再进行全链接,这样有利于网络的收敛。
在这里插入图片描述

支持轨迹控制,相机控制等新控制方式

参考Drag Anything,我们使用了2D的轨迹控制,在Conv in前添加轨迹控制点,通过轨迹控制点控制物体的运动方向。通过白色高斯图的方式,指定物体的运动方向。

参考CameraCtrl,我们在Conv in前输入了相机镜头的控制轨迹,该轨迹规定的镜头的运动方向,实现了视频镜头的控制。

如下图三个GIF,第一个GIF为控制的白色高斯图,第二个GIF为控制后狗狗的运动情况,第三个GIF是两个视频合起来看的样子。
请添加图片描述
请添加图片描述
请添加图片描述

使用奖励算法最终优化性能

为了进一步优化生成视频的质量以更好地对齐人类偏好,我们采用奖励反向传播(DRaFT 和 DRTune)对 EasyAnimateV5.1 基础模型进行后训练,使用奖励提升模型的文本一致性与画面的精细程度。

我们在EasyAnimate ComfyUI中详细说明了奖励反向传播的使用方案。我们实际使用了HPS v2.1和MPS两个模型对EasyAnimateV5.1进行奖励反向,两个模型都是人类偏好模型,作为反馈,调整后的EasyAnimateV5.1具有更好的文视频一致性,且画面更加精细。

如下三个视频,首个视频是没有使用奖励模型的生成效果,第二个视频是使用HPS作为奖励模型的生成效果,第三个视频是使用MPS作为奖励模型的生成效果。可以看到后面两个模型明显更为讨人喜欢。
在这里插入图片描述

使用Flow matching作为采样方式

除了上述的架构变化之外,EasyAnimateV5.1还应用Flow-matching的方案来训练模型。在这种方法中,前向噪声过程被定义为在直线上连接数据和噪声分布的整流。

修正流匹配采样过程更简单,在减少采样步骤数时表现良好。与Stable Diffusion 3一致,我们新的调度程序(FlowMatchEulerDiscreteScheduler)作为调度器,其中包含修正流匹配公式和欧拉方法步骤。

项目使用

ComfyUI启动

安装

选项1:通过ComfyUI管理器安装

选项2:手动安装

EasyAnimate存储库需要放置在ComfyUI/custom_nodes/EasyAnimate/

cd ComfyUI/custom_nodes/# Git clone the easyanimate itself
git clone https://github.com/aigc-apps/EasyAnimate.git# Git clone the video outout node
git clone https://github.com/Kosinkadink/ComfyUI-VideoHelperSuite.git
git clone https://github.com/kijai/ComfyUI-KJNodes.gitcd EasyAnimate/
pip install -r comfyui/requirements.txt

将模型下载到ComfyUI/models/EasyAnimate/

EasyAnimateV5.1:
12B:

名称类型存储空间拥抱面型号范围描述
EasyAnimateV5.1-12b-zh-InPEasyAnimateV5.139 GB🤗链接😄链接官方图像到视频权重。支持多种分辨率(512 768 1024)的视频预测,以每秒8帧的速度训练49帧,支持多语言预测
EasyAnimateV5.1-12b-zh-控件EasyAnimateV5.139 GB🤗链接😄链接官方视频控制权重,支持Canny、Depth、Pose、MLSD和轨迹控制等各种控制条件。支持多种分辨率(512 768 1024)的视频预测,以每秒8帧的速度训练49帧,支持多语言预测
EasyAnimateV5.1-12b-zh-控制摄像头EasyAnimateV5.139 GB🤗链接😄链接官方摄像机控制权重,支持通过输入摄像机运动轨迹进行方向生成控制。支持多种分辨率(512 768 1024)的视频预测,以每秒8帧的速度训练49帧,支持多语言预测
EasyAnimateV5.1-12b-zhEasyAnimateV5.139 GB🤗链接😄链接官方文本到视频权重。支持多种分辨率(512 768 1024)的视频预测,以每秒8帧的速度训练49帧,支持多语言预测

文本到视频生成

我们的用户界面显示如下,这是json:

工作流程图

图像到视频生成

我们的用户界面显示如下,这是json:

工作流程图

您可以使用以下照片运行演示:

演示图像

视频到视频生成

我们的用户界面显示如下,这是json:

工作流程图

您可以使用以下视频运行演示:

演示视频

镜头控制视频生成

我们的用户界面显示如下,这是json:
工作流程图
您可以使用以下照片运行演示:
演示图像

轨迹控制视频生成

我们的用户界面显示如下,这是json:

工作流程图

您可以使用以下照片运行演示:

演示图像

控制视频生成

我们的用户界面显示如下,这是json:

工作流程图

您可以使用以下视频运行演示:

演示视频

WebUI启动

推荐在docker中使用EasyAnimateV5.1:

# pull image
docker pull mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:easyanimate# enter image
docker run -it -p 7860:7860 --network host --gpus all --security-opt seccomp:unconfined --shm-size 200g mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:easyanimate# clone code
git clone https://github.com/aigc-apps/EasyAnimate.git# enter EasyAnimate's dir
cd EasyAnimate# download weights
mkdir models/Diffusion_Transformer
mkdir models/Motion_Module
mkdir models/Personalized_Model# Please use the hugginface link or modelscope link to download the EasyAnimateV5 model.
# I2V models
# https://huggingface.co/alibaba-pai/EasyAnimateV5.1-12b-zh-InP
# https://modelscope.cn/models/PAI/EasyAnimateV5.1-12b-zh-InP
# T2V models
# https://huggingface.co/alibaba-pai/EasyAnimateV5.1-12b-zh
# https://modelscope.cn/models/PAI/EasyAnimateV5.1-12b-zh

文生视频

首先进入gradio网站。选择对应的预训练模型,如"models/Diffusion_Transformer/EasyAnimateV5.1-12b-zh-InP"。然后在下方填写提示词。

然后调整视频高宽和生成帧数,最后进行生成;
请添加图片描述
请添加图片描述

图生视频

请添加图片描述

图生视频与文生视频有两个不同点:

  • 1、需要指定参考图;
  • 2、指定与参考图类似的高宽;

CogVideoX-Fun的ui已经提供了自适应的按钮Resize to the Start Image,打开后可以自动根据输入的首图调整高宽。
在这里插入图片描述

视频生视频

视频生视频与文生视频有两个不同点:

  • 1、需要指定参考视频;
  • 2、指定与参考视频类似的高宽;

ui已经提供了自适应的按钮Resize to the Start Image,打开后可以自动根据输入的视频调整高宽。
请添加图片描述

控制生视频

首先调整model type到Control,然后选择模型。请添加图片描述

可修改prompt如下:

A person wearing a knee-length white sleeveless dress and white high-heeled sandals performs a dance in a well-lit room with wooden flooring. The room's background features a closed door, a shelf displaying clear glass bottles of alcoholic beverages, and a partially visible dark-colored sofa. 

在这里插入图片描述
然后修改为根据参考视频自动resize。
在这里插入图片描述
最后上传控制视频,进行生成。
demo

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/893472.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1905电影网中国地区电影数据分析(一) - 数据采集、清洗与存储

文章目录 前言一、数据采集步骤及python库使用版本1. python库使用版本2. 数据采集步骤 二、数据采集网页分析1. 分析采集的字段和URL1.1 分析要爬取的数据字段1.2 分析每部电影的URL1.2 分析每页的URL 2. 字段元素标签定位 三、数据采集代码实现1. 爬取1905电影网分类信息2. 爬…

【25】Word:林涵-科普文章❗

目录 题目​ NO1.2.3 NO4.5.6 NO7.8 NO9.10 NO11.12 不连续选择:按住ctrl按键,不连续选择连续选择:按住shift按键,选择第一个,选择最后一个。中间部分全部被选择 题目 NO1.2.3 布局→纸张方向:横向…

C语言二级

//请编写函数fun(),该函数的功能是:计算并输出给定整数n的所有因 //子(不包括1和自身)之和。规定n的值不大于1000。例如,在主函数 //中从键盘给n输入的值为856,则输出为:sum 763。 //注意&…

P6周:VGG-16算法-Pytorch实现人脸识别

🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊 我的环境 语言环境:Python 3.8.12 编译器:jupyter notebook 深度学习环境:torch 1.12.0cu113 一、前期准备 1.设置GPU im…

Mac下安装ADB环境的三种方式

参考网址: Mac下安装ADB环境的三种方式-百度开发者中心 ADB,即Android Debug Bridge,是Android开发过程中不可或缺的工具。通过ADB,开发者可以在计算机上管理设备或模拟器上的应用,提供了丰富的调试功能。然而&#…

WordPress Fancy Product Designer插件Sql注入漏洞复现(CVE-2024-51818)(附脚本)

免责申明: 本文所描述的漏洞及其复现步骤仅供网络安全研究与教育目的使用。任何人不得将本文提供的信息用于非法目的或未经授权的系统测试。作者不对任何由于使用本文信息而导致的直接或间接损害承担责任。如涉及侵权,请及时与我们联系,我们将尽快处理并删除相关内容。 0x0…

web速览

web速览 1. 前端开发 概述: 前端开发是构建网站用户界面的过程,主要关注网站的视觉效果和用户体验。又称为客户端 技术栈: HTML(超文本标记语言):用于创建网页的结构和内容。CSS(层叠样式表&a…

PHP常见正则表达式

一、校验数字的表达式 1 数字:^[0-9]*$ 2 n位的数字:^\d{n}$ 3 至少n位的数字:^\d{n,}$ 4 m-n位的数字:^\d{m,n}$ 5 零和非零开头的数字:^(0|[1-9][0-9]*)$ 6 非零开头的最多带两位小数的数字:^([1-9][0-…

0164__【GNU】gcc -O编译选项 -Og -O0 -O1 -O2 -O3 -Os

【GNU】gcc -O编译选项 -Og -O0 -O1 -O2 -O3 -Os_gcc -o0-CSDN博客

【Rust自学】14.4. 发布crate到crates.io

喜欢的话别忘了点赞、收藏加关注哦(加关注即可阅读全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 14.4.1. 创建并设置crates.io账号 在发布任何 crate 之前,你需要在 crates.io并…

青少年编程与数学 02-007 PostgreSQL数据库应用 15课题、备份与还原

青少年编程与数学 02-007 PostgreSQL数据库应用 15课题、备份与还原 一、数据库备份与还原二、PostgreSQL中操作数据库的备份与还原1. 使用pg_dump进行逻辑备份2. 使用pg_restore进行逻辑还原3. 使用pg_basebackup进行物理备份4. 还原物理备份注意事项 三、自动备份1. 使用pg_d…

数据结构——实验八·学生管理系统

嗨~~欢迎来到Tubishu的博客🌸如果你也是一名在校大学生,正在寻找各种编程资源,那么你就来对地方啦🌟 Tubishu是一名计算机本科生,会不定期整理和分享学习中的优质资源,希望能为你的编程之路添砖加瓦⭐&…

IBM湖仓一体与向量数据库:访问MinIO控制台(Accessing the MinIO console)

_1、从密钥中复制S3凭证并保存 (Copy the S3 credentials from the secret and save it ) oc extract secret/ibm-lh-config-secret -n ${PROJECT_CPD_INST_OPERANDS} --to- --keysenv.properties | grep -E "LH_S3_ACCESS_KEY|LH_S3_SECRET_KEY&q…

STM32 低功耗设计:从原理到实现的详细介绍

在现代嵌入式系统中,尤其是在需要长时间工作且电池供电的设备中,低功耗设计至关重要。STM32作为一种流行的微控制器系列,广泛应用于便携设备、传感器网络、可穿戴设备等领域,提供了多种低功耗模式来延长电池使用时间并优化整体能效…

View Shadcn UI 2025.1.2 发布公告:全新跑马灯组件与多项优化更新

亲爱的开发者们: 我们很高兴地宣布 View Shadcn UI 2025.1.2 版本正式发布!本次更新带来了全新的跑马灯组件,并对多个现有组件进行了功能增强和问题修复。 🚀 重要链接 GitHub 仓库:https://github.com/devlive-comm…

Ragas-RAG能力评测

Ragas是一个框架,它可以帮助你从不同的方面评估你的问答(QA)流程。它为你提供了一些指标来评估你的问答系统的不同方面,具体包括: 评估检索(context)的指标:提供了上下文相关性&…

“深入浅出”系列之数通篇:(5)TCP的三次握手和四次挥手

TCP(传输控制协议)的三次握手和四次挥手是TCP连接建立和释放的过程。 一、TCP三次握手 TCP三次握手是为了建立可靠的连接,确保客户端和服务器之间的通信能力。具体过程如下: 第一次握手:客户端向服务器发送一个带有…

基于ESP32-IDF驱动GPIO输出控制LED

基于ESP32-IDF驱动GPIO输出控制LED 文章目录 基于ESP32-IDF驱动GPIO输出控制LED一、点亮LED3.1 LED电路3.2 配置GPIO函数gpio_config()原型和头文件3.3 设置GPIO引脚电平状态函数gpio_set_level()原型和头文件3.4 代码实现并编译烧录 一、点亮LED 3.1 LED电路 可以看到&#x…

【设计模式】JAVA 策略 工厂 模式 彻底告别switch if 等

【设计模式】JAVA 策略 工厂 模式 彻底告别switch if 等 目录 【设计模式】JAVA 策略 工厂 模式 彻底告别switch if 等 优势 适用场景 项目结构 关键代码 优势 消除 switch:将分支逻辑分散到独立的策略类中。 开闭原则:新增类型只需添加新的 TypeHa…

使用ffmpeg提高mp4压缩比,减小文件体积【windows+ffmpeg+batch脚本】

文章目录 关于前情提要FFmpeg是什么使用脚本运行FFmpeg首先,下载ffmpeg.exe然后在视频相同位置写一个bat脚本运行压缩脚本 关于 个人博客,里面偶尔更新,最近比较忙。发一些总结的帖子和思考。 江湖有缘相见🤝。如果读者想和我交…