Flink (九):DataStream API (六) Process Function

1. ProcessFunction

ProcessFunction 是一种底层的流处理操作,基于它用户可以访问(无环)流应用程序的所有基本构建块

  • 事件(流元素)
  • 状态(容错,一致性,仅在 keyed stream 上)
  • 定时器(事件时间和处理时间,仅在 keyed stream 上)

可以将 ProcessFunction 视为一种可以访问 keyed state 和定时器的 FlatMapFunction。Flink 为收到的输入流中的每个事件都调用该函数来进行处理。对于容错,与其它有状态的函数类似,ProcessFunction 可以通过 RuntimeContext 访问 Flink 的keyed state。定时器允许应用程序对处理时间和 事件时间中的更改做出反应。 每次调用 processElement(...) 时参数中都会提供一个 Context 对象,该对象可以访问元素的事件时间戳和 TimerService。 

TimerService 可用于为将来特定的事件时间/处理时间注册回调。 特定事件时间的 onTimer(...) 回调函数会在当前对齐的 watermark 超过所注册的时间戳时调用。 特定处理时间的 onTimer(...) 回调函数则会在系统物理时间超过所注册的时间戳时调用。 在该调用期间,所有状态会被再次绑定到创建定时器时的键上,从而允许定时器操作与之对应的 keyed state。如果想要访问 keyed state 和定时器,需要在 keyed stream 上使用 ProcessFunction

stream.keyBy(...).process(new MyProcessFunction());

2. 底层 Join

为了在两个输入上实现底层操作,应用程序可以使用 CoProcessFunction 或 KeyedCoProcessFunction。 这些函数绑定两个不同的输入,从两个不同的输入中获取元素并分别调用 processElement1(...) 和 processElement2(...) 进行处理。

实现底层 join 一般需要遵循以下模式:

  • 为一个输入(或两者)创建状态对象。
  • 从某个输入接收元素时更新状态。
  • 从另一个输入接收元素时,查询状态并生成 join 结果。

例如,你可能会将客户数据与金融交易进行 join,同时想要保留客户数据的状态。如果你希望即使在出现乱序事件时仍然可以得到完整且确定的 join 结果,你可以通过注册一个定时器在客户数据流的 watermark 已经超过当前这条金融交易记录时计算和发送 join 结果。

在下面的例子中,KeyedProcessFunction 维护每个键的计数,并且每次超过一分钟(事件时间)没有更新时输出一次键/计数对。

  • 计数,键和最后修改时间存储在 ValueState 中,它由键隐式限定范围。
  • 对于每条记录,KeyedProcessFunction 递增计数器并设置最后修改时间。
  • 对于每条记录,该函数还会注册了一个一分钟后(事件时间)的回调函数。
  • 在每次回调时,它会根据注册的时间和最后修改时间进行比较,如果正好差一分钟则 输出键/计数对(即,在该分钟内没有进一步更新)

这个简单的例子本身可以用会话窗口(session window)实现, 这里我们使用 KeyedProcessFunction 来展示使用它的基本模式。

import org.apache.flink.api.common.functions.OpenContext;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction.Context;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction.OnTimerContext;
import org.apache.flink.util.Collector;// 源数据流
DataStream<Tuple2<String, String>> stream = ...;// 使用 process function 来处理一个 Keyed Stream 
DataStream<Tuple2<String, Long>> result = stream.keyBy(value -> value.f0).process(new CountWithTimeoutFunction());/*** 在状态中保存的数据类型*/
public class CountWithTimestamp {public String key;public long count;public long lastModified;
}/*** 用来维护数量和超时的 ProcessFunction 实现*/
public class CountWithTimeoutFunction extends KeyedProcessFunction<Tuple, Tuple2<String, String>, Tuple2<String, Long>> {/** 由 process function 管理的状态 */private ValueState<CountWithTimestamp> state;@Overridepublic void open(OpenContext openContext) throws Exception {state = getRuntimeContext().getState(new ValueStateDescriptor<>("myState", CountWithTimestamp.class));}@Overridepublic void processElement(Tuple2<String, String> value, Context ctx, Collector<Tuple2<String, Long>> out) throws Exception {// 获得当前的数量CountWithTimestamp current = state.value();if (current == null) {current = new CountWithTimestamp();current.key = value.f0;}// 更新状态中的数量current.count++;// 将状态中的最后修改时间改为记录的事件时间current.lastModified = ctx.timestamp();// 将更新后的状态写回state.update(current);// 注册一个 60s 之后的事件时间回调 ctx.timerService().registerEventTimeTimer(current.lastModified + 60000);}@Overridepublic void onTimer(long timestamp, OnTimerContext ctx, Collector<Tuple2<String, Long>> out) throws Exception {// 获得注册该回调时使用的键对应的状态CountWithTimestamp result = state.value();// 检查当前回调时否是最新的回调还是后续注册了新的回调if (timestamp == result.lastModified + 60000) {// 超时后发送状态out.collect(new Tuple2<String, Long>(result.key, result.count));}}
}

在 Flink 1.4.0 之前,在调用处理时间定时器时,ProcessFunction.onTimer() 方法将当前的处理时间设置为事件时间的时间戳。此行为非常不明显,用户可能不会注意到。 然而,这样做是有害的,因为处理时间的时间戳是不确定的,并且和 watermark 不一致。此外,用户依赖于此错误的时间戳来实现逻辑很有可能导致非预期的错误。 因此,我们决定对其进行修复。在 1.4.0 后,使用此错误的事件时间时间戳的 Flink 作业将失败,用户应将其作业更正为正确的逻辑。

3. KeyedProcessFunction

KeyedProcessFunction 是 ProcessFunction 的一个扩展, 可以在其 onTimer(...) 方法中访问定时器的键。

@Override
public void onTimer(long timestamp, OnTimerContext ctx, Collector<OUT> out) throws Exception {K key = ctx.getCurrentKey();// ...
}

4. Timers

两种定时器(处理时间定时器和事件时间定时器)都在 TimerService 内部维护,并排队等待执行。对于相同的键和时间戳,TimerService 会删除重复的定时器,即每个键和时间戳最多有一个定时器。如果为同一时间戳注册了多个定时器,则只调用一次 onTimer() 方法。Flink 会同步 onTimer() 和 processElement() 的调用,因此用户不必担心状态的并发修改。

4.1 Fault Tolerance

定时器支持容错,它会和应用程序的状态一起进行 checkpoint。当进行故障恢复或从保存点启动应用程序时,定时器也会被恢复。当应用程序从故障中恢复或从保存点启动时,可能会发生这种情况。即:在恢复之前就应该触发的处理时间定时器会立即触发。

除了使用基于 RocksDB backend 的增量 snapshots 并使用基于 Heap 的定时器的情况外,Flink 总是会异步执行计算器的快照操作。 大量定时器会增加 checkpoint 的时间,因为定时器是需要 checkpoint 的状态的一部分。

4.2 Timer Coalescing

由于 Flink 中每个键和时间戳只保存一个定时器,因此可以通过降低定时器的精度来合并它们,从而减少定时器的数量。

对于精度为 1 秒(事件或处理时间)的定时器,可以将目标时间向下舍入为整秒。定时器最多会提前 1 秒,但不迟于要求的毫秒精度。 这样,每个键在每秒内最多有一个定时器。

long coalescedTime = ((ctx.timestamp() + timeout) / 1000) * 1000;
ctx.timerService().registerProcessingTimeTimer(coalescedTime);

由于事件时间定时器仅在 watermark 到来时才触发,因此还可以将下一个 watermark 到达前的定时器与当前定时器合并:

long coalescedTime = ctx.timerService().currentWatermark() + 1;
ctx.timerService().registerEventTimeTimer(coalescedTime);

定时器也可以按照以下方式被停止或者删除:

停止处理时间定时器:

long timestampOfTimerToStop = ...;
ctx.timerService().deleteProcessingTimeTimer(timestampOfTimerToStop);

停止事件时间定时器:

long timestampOfTimerToStop = ...;
ctx.timerService().deleteEventTimeTimer(timestampOfTimerToStop);

如果没有注册给定时间戳的定时器,则停止定时器不会产生影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/893271.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux Bash 中使用重定向运算符的 5 种方法

注&#xff1a;机翻&#xff0c;未校。 Five ways to use redirect operators in Bash Posted: January 22, 2021 | by Damon Garn Redirect operators are a basic but essential part of working at the Bash command line. See how to safely redirect input and output t…

C语言内存之旅:从静态到动态的跨越

大家好&#xff0c;这里是小编的博客频道 小编的博客&#xff1a;就爱学编程 很高兴在CSDN这个大家庭与大家相识&#xff0c;希望能在这里与大家共同进步&#xff0c;共同收获更好的自己&#xff01;&#xff01;&#xff01; 本文目录 引言正文一 动态内存管理的必要性二 动态…

AI时代:弯道超车的新思维与实践路径

大家好&#xff0c;我是herosunly。985院校硕士毕业&#xff0c;现担任算法研究员一职&#xff0c;热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名&#xff0c;CCF比赛第二名&#xff0c;科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的…

【Spring】定义的Bean缺少隐式依赖

问题描述 初学 Spring 时&#xff0c;我们往往不能快速转化思维。例如&#xff0c;在程序开发过程中&#xff0c;有时候&#xff0c;一方面我们把一个类定义成 Bean&#xff0c;同时又觉得这个 Bean 的定义除了加了一些 Spring 注解外&#xff0c;并没有什么不同。所以在后续使…

『 实战项目 』Cloud Backup System - 云备份

文章目录 云备份项目服务端功能服务端功能模块划分客户端功能客户端模块划分 项目条件Jsoncpp第三方库Bundle第三方库httplib第三方库Request类Response类Server类Client类搭建简单服务器搭建简单客户端 服务端工具类实现 - 文件实用工具类服务器配置信息模块实现- 系统配置信息…

网络编程 | UDP组播通信

1、什么是组播 在上一篇博客中&#xff0c;对UDP的广播通信进行了由浅入深的总结梳理&#xff0c;本文继续对UDP的知识体系进行探讨&#xff0c;旨在将UDP的组播通信由浅入深的讲解清楚。 组播是介于单播与广播之间&#xff0c;在一个局域网内&#xff0c;将某些主机添加到组中…

【无标题】微调是迁移学习吗?

是的&#xff0c;微调&#xff08;Fine-Tuning&#xff09;可以被视为一种迁移学习&#xff08;Transfer Learning&#xff09;的形式。迁移学习是一种机器学习方法&#xff0c;其核心思想是利用在一个任务上学到的知识来改进另一个相关任务的性能。微调正是通过在预训练模型的…

【HarmonyOS NAPI 深度探索12】创建你的第一个 HarmonyOS NAPI 模块

【HarmonyOS NAPI 深度探索12】创建你的第一个 HarmonyOS NAPI 模块 在本篇文章中&#xff0c;我们将一步步走过如何创建一个简单的 HarmonyOS NAPI 模块。通过这个模块&#xff0c;你将能够更好地理解 NAPI 的工作原理&#xff0c;并在你的应用中开始使用 C 与 JavaScript 的…

【电视盒子】HI3798MV300刷机教程笔记/备份遥控码修复遥控器/ADB/线刷卡刷/电视盒子安装第三方应用软件

心血来潮&#xff0c;看到电视机顶盒满天飞的广告&#xff0c;想改造一下家里的电视盒子&#xff0c;学一下网上的人刷机&#xff0c;但是一切都不知道怎么开始&#xff0c;虽然折腾了一天&#xff0c;以失败告终&#xff0c;还是做点刷机笔记。 0.我的机器 年少不会甄别&…

Python基于OpenCV和PyQt5的人脸识别上课签到系统【附源码】

博主介绍&#xff1a;✌Java老徐、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&…

【FPGA】MIPS 12条整数指令【1】

目录 修改后的仿真结果 修改后的完整代码 实现bgtz、bltz、jalr 仿真结果&#xff08;有问题&#xff09; bltz------并未跳转&#xff0c;jCe&#xff1f; 原因是该条跳转语句判断的寄存器r7&#xff0c;在该时刻并未被赋值 代码&#xff08;InstMem修改前&#xff09; i…

Java面试专题——常见面试题1

引入 本文属于专题中的常见面试题模块&#xff0c;属于面试时经常遇到的&#xff0c;适合需要面试的小伙伴做面试前复习准备用&#xff0c;后续会持续补充 1.面向对象基本特征 面向对象的基本特征是什么&#xff1f;怎么理解&#xff1f; 面向对象的基本特征是封装、继承、…

VUE实现简单留言板(Timeline+infinite scroll+Springboot+Hibernate)

先贴出效果图&#xff1a; 留言按照倒序排列。在底部的文本框内输入留言后&#xff0c;点击“留言”按钮&#xff0c;留言将保存至数据库中&#xff0c;同时刷新网页&#xff0c;新留言出现在顶部。 当滚动条到底部时&#xff0c;自动调用加载函数&#xff0c;显示更多早期留…

Java基础(3)

Java 数据类型详解 九、运算符 1. 基本运算符 Java 提供了多种运算符来执行不同的操作&#xff1a; 算术运算符&#xff1a;&#xff08;加&#xff09;、-&#xff08;减&#xff09;、*&#xff08;乘&#xff09;、/&#xff08;除&#xff09;、%&#xff08;取模&…

电力场景红外测温图像绝缘套管分割数据集labelme格式2436张1类别

数据集格式&#xff1a;labelme格式(不包含mask文件&#xff0c;仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数)&#xff1a;2436 标注数量(json文件个数)&#xff1a;2436 标注类别数&#xff1a;1 标注类别名称:["arrester"] 每个类别标注的框数&am…

降维算法:主成分分析

主成分分析 一种常用的数据分析技术&#xff0c;主要用于数据降维&#xff0c;在众多领域如统计学、机器学习、信号处理等都有广泛应用。 主成分分析是一种通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量&#xff08;即主成分&#xff09;的方法。这些主…

深入解析 C++17 中的 u8 字符字面量:提升 Unicode 处理能力

在现代软件开发中&#xff0c;处理多语言文本是一个常见需求&#xff0c;特别是在全球化的应用场景下。C17 标准引入的 u8 字符字面量为开发者提供了一个强大的工具&#xff0c;以更有效地处理和表示 UTF-8 编码的字符串。本文将详细探讨 u8 字符字面量的技术细节、实际应用&am…

ElasticSearch索引别名的应用

个人博客&#xff1a;无奈何杨&#xff08;wnhyang&#xff09; 个人语雀&#xff1a;wnhyang 共享语雀&#xff1a;在线知识共享 Github&#xff1a;wnhyang - Overview Elasticsearch 索引别名是一种极为灵活且强大的功能&#xff0c;它允许用户为一个或多个索引创建逻辑上…

Java高频面试之SE-15

hello啊&#xff0c;各位观众姥爷们&#xff01;&#xff01;&#xff01;本牛马baby今天又来了&#xff01;哈哈哈哈哈嗝&#x1f436; String 怎么转成 Integer 的&#xff1f;它的原理是&#xff1f; 在 Java 中&#xff0c;要将 String 转换为 Integer 类型&#xff0c;可…

2024又是一年的CSDN之旅-总结过去展望未来

一、前言 一年就这样在忙忙碌碌的工作和生活中一晃而过&#xff0c;总结今年在CSDN上发表的博客&#xff0c;也有上百篇之多&#xff0c;首先感谢CSDN这个平台&#xff0c;能让我有一个地方记录工作中的点点滴滴&#xff0c;也在上面学到了不少知识&#xff0c;解决了工作中遇到…