【k8s面试题2025】1、练气期

主要通过呼吸吐纳等方法,将外界的天地灵气吸入体内,初步改造身体,使身体素质远超常人。

文章目录

  • docker 和虚拟机的不同
  • Kubernetes 和 docker 的关系
  • Kube-proxy IPVS 和 iptables 的异同
  • 蓝绿发布
  • Kubernetes中常见的数据持久化方式
  • 关于 Dockerfile 中 `COPY` 和 `ADD` 指令的异同点

docker 和虚拟机的不同

在这里插入图片描述

  • 传统虚拟化:底层硬件安装宿主机系统,如 Linux 或 Windows,在宿主机系统上安装虚拟机管理程序(如 KVM、VMware 等),再安装虚拟机操作系统,每个虚拟机都有独立内核,运行应用时需在虚拟机操作系统上配置应用运行时环境。这种方式资源消耗大,随着虚拟机实例增多,内存和 CPU 消耗显著增加,宿主机性能明显下降。
  • docker 虚拟化:同样基于底层硬件和宿主机系统,但无需虚拟机管理程序和额外的操作系统开销,直接在容器内运行应用,容器有独立文件系统,处于隔离状态,运行效率高于传统虚拟化。可总结为 docker 是轻量级沙盒,只运行应用,而虚拟机有额外独立操作系统。

Kubernetes 和 docker 的关系

  1. 联系要点
    • 容器运行依赖:Kubernetes依赖像Docker这样的容器引擎来运行容器,容器引擎是Kubernetes集群中容器运行的基础。
    • 共同服务部署:二者协作进行容器化应用的部署和管理。Docker打包应用为容器,Kubernetes对这些容器进行编排,让它们在集群环境高效工作。
  2. 区别要点
    • 功能侧重:Docker侧重于容器的创建、运行和管理,重点是单个容器生命周期;Kubernetes侧重于容器编排,如调度容器到节点、资源分配和服务发现。
    • 应用场景:Docker适合开发测试环境构建和运行容器;Kubernetes用于生产环境大规模集群管理。
    • 复杂程度:Docker简单直接,容易学习使用;Kubernetes复杂,有众多组件和概念,学习成本高。

Kube-proxy IPVS 和 iptables 的异同

  1. 相同点
  • 功能目的相同
    • kube - proxy无论是使用iptables还是ipvs,其主要功能都是为了实现Kubernetes集群中Service的负载均衡和代理。它们的目的是将对Service的请求流量,根据一定的规则转发到对应的后端Pod。例如,在一个Web服务的集群中,外部请求访问Service的IP和端口时,kube - proxy(无论是哪种模式)都会将请求正确地分发到后端运行Web应用的Pod,以提供服务。
  • 都是基于内核功能实现
    • iptables和ipvs都是利用Linux内核提供的网络功能来构建的。iptables是基于内核的netfilter框架,通过一系列的规则链来处理网络数据包。ipvs同样也是在内核空间运行,利用内核的IPVS模块来实现高效的负载均衡。它们都是紧密结合Linux内核来完成网络代理和负载均衡任务的。
  1. 不同点
  • 性能方面
    • iptables:在大规模集群环境下,随着Service和Pod数量的增加,iptables的性能会逐渐下降。因为iptables是基于规则链来处理数据包的,每一个新的Service或者Pod的变化都可能导致大量规则的添加和修改。例如,每次创建一个新的Service或者Pod,iptables都需要更新规则,而且这些规则是线性遍历的,当规则数量庞大时,会导致数据包处理延迟增加,消耗更多的CPU资源。
    • ipvs:ipvs是专门为负载均衡设计的内核模块,在处理大量连接和高并发场景时性能更优。它使用哈希表等高效的数据结构来存储和查找转发规则,相比于iptables的线性规则链,能够更快地定位到要转发的目标。例如,在一个有数千个Pod的大型集群中,ipvs可以更快地将流量分配到后端Pod,吞吐量更高,延迟更低。
  • 负载均衡算法方面
    • iptables:iptables本身的负载均衡功能相对简单,主要是基于随机或者轮询(Round - Robin)的方式。例如,在简单的轮询模式下,它会依次将请求发送到后端的Pod,没有考虑Pod的负载情况等复杂因素。
    • ipvs:ipvs支持多种复杂的负载均衡算法,如轮询(Round - Robin)、加权轮询(Weighted Round - Robin)、最小连接数(Least - Connections)、加权最小连接数(Weighted Least - Connections)等。这使得它可以根据后端Pod的实际负载情况、资源配置等因素,更灵活地分配流量。例如,如果某个Pod的资源配置更高或者当前负载较轻,通过加权轮询或者最小连接数算法,可以将更多的流量分配给这个Pod。
  • 规则更新机制方面
    • iptables:iptables规则的更新是即时生效的,但在更新大量规则时可能会出现性能问题。当有新的Service或者Pod加入或者退出时,iptables需要更新规则链,这个过程可能会比较复杂。例如,在一个频繁更新服务的环境中,iptables可能会因为不断地修改规则而导致网络抖动,影响服务的稳定性。
    • ipvs:ipvs的规则更新相对来说更加高效。它可以动态地添加、删除和修改转发规则,并且在更新过程中对正在进行的连接影响较小。例如,当有新的Pod加入服务后端时,ipvs可以更快地将其纳入负载均衡的范围,而不会像iptables那样可能因为规则更新而暂时中断部分服务。

蓝绿发布

  1. 定义

    • 蓝绿发布是一种应用发布策略。在这种策略中,有两个完全相同的生产环境,分别称为“蓝环境”和“绿环境”。这两个环境除了正在提供服务的版本不同外,其他配置(如硬件、软件、网络等)基本相同。例如,蓝环境运行的是旧版本的应用程序,绿环境则部署和测试新版本的应用程序。
  2. 工作流程

    • 初始状态:在发布开始前,用户流量全部导向蓝环境,绿环境处于待命状态或者正在进行新版本应用的部署和测试。例如,一个电商网站的应用,用户访问的是蓝环境中的旧版本应用,绿环境中的新版本应用正在进行最后的功能测试。
    • 切换阶段:当绿环境中的新版本应用测试完成并且确认无误后,将用户流量从蓝环境切换到绿环境。这个切换过程可以是通过修改负载均衡器的配置,或者更新DNS记录等方式来实现。例如,在Kubernetes环境下,可以通过更新Service的后端指向,将流量从蓝环境的Pod切换到绿环境的Pod。
    • 回滚机制:如果在切换后发现新版本应用出现问题,能够快速地将用户流量再切换回蓝环境,恢复到旧版本应用的服务状态。这种快速回滚的能力是蓝绿发布的一个重要优势,可以有效降低发布风险。
  3. 在Kubernetes中的实现方式

    • 资源准备:在Kubernetes集群中,通过Deployment或者StatefulSet等资源来创建蓝环境和绿环境对应的应用资源。例如,使用两个不同的Deployment分别部署蓝环境和绿环境的应用版本,每个Deployment管理一组Pod,这些Pod运行相同版本的应用。
    • 流量切换:可以利用Kubernetes的Service资源来控制流量的导向。Service可以通过标签选择器(label selector)来选择要将流量发送到的Pod。在切换时,修改Service的标签选择器,使其从指向蓝环境的Pod改为指向绿环境的Pod。例如,蓝环境的Pod标签为version: blue,绿环境的Pod标签为version: green,最初Service的标签选择器为version: blue,切换时将其改为version: green
    • 监控与回滚:在整个发布过程中,通过Kubernetes的监控工具(如Prometheus集成)来密切监控应用的性能指标。如果发现问题,如错误率上升、响应时间过长等,及时将流量切换回蓝环境。可以通过记录发布过程中的配置变更,快速地恢复到之前的状态。
  4. 优点

    • 风险可控:因为有一个完整的旧版本环境作为备份,一旦新版本出现问题,可以快速回滚,将对用户的影响降到最低。
    • 发布过程清晰:蓝绿两个环境界限分明,发布过程简单明了,便于开发、运维人员理解和操作。
    • 便于测试对比:在发布前可以在绿环境中充分测试新版本,并且可以与蓝环境中的旧版本进行对比测试,确保新版本的质量。
  5. 缺点

    • 资源消耗大:需要维护两个完整的生产环境,这在资源(如服务器、存储、网络等)方面的成本较高。
    • 切换复杂:在流量切换过程中,如果操作不当,可能会导致短暂的服务中断或者流量丢失等问题。例如,在切换负载均衡器配置时,如果配置有误或者同步不及时,可能会出现部分用户无法访问服务的情况。

Kubernetes中常见的数据持久化方式

一、持久卷(Persistent Volume,PV)和持久卷声明(Persistent Volume Claim,PVC)

  1. 持久卷(PV)

    • 是集群中的一块存储,可以由管理员预先分配,也可以动态创建。它是一种抽象的存储资源,与具体的存储实现(如NFS、Ceph、iSCSI等)相分离。例如,管理员可以使用以下YAML文件创建一个NFS类型的PV:
    apiVersion: v1
    kind: PersistentVolume
    metadata:name: nfs-pv
    spec:capacity:storage: 10GiaccessModes:- ReadWriteManynfs:server: nfs-server.example.compath: "/path/to/export"
    
    • 这里定义了一个容量为10GB、支持多节点读写(ReadWriteMany)的NFS存储,它的存储后端是nfs-server.example.com服务器上的/path/to/export目录。
  2. 持久卷声明(PVC)

    • 是用户对存储的请求,它可以请求一定数量的存储资源和访问模式。PVC和PV是通过accessModesstorage等属性进行匹配的。例如,用户可以使用以下YAML文件创建一个PVC:
    apiVersion: v1
    kind: PersistentVolumeClaim
    metadata:name: my-pvc
    spec:accessModes:- ReadWriteOnceresources:requests:storage: 5Gi
    
    • 这个PVC请求5GB的存储,且只允许单个节点读写(ReadWriteOnce)。Kubernetes会根据这个PVC的要求自动匹配到合适的PV。
  3. 使用方式

    • 在Pod的spec中,通过volumesvolumeMounts来使用PVC。例如:
    apiVersion: v1
    kind: Pod
    metadata:name: my-pod
    spec:containers:- name: my-containerimage: my-imagevolumeMounts:- name: my-volumemountPath: /datavolumes:- name: my-volumepersistentVolumeClaim:claimName: my-pvc
    
    • 这里将名为my-pvc的PVC挂载到容器内的/data目录,使得容器可以读写PVC提供的存储资源。

二、本地存储卷(Local Volume)

  1. 概念

    • 是将存储直接绑定到集群的某个节点上,适用于需要低延迟和高性能的本地存储需求。例如,对于一些有本地SSD存储的节点,可以使用本地存储卷。
  2. 使用方式

    • 首先要创建一个本地存储的StorageClass,指定存储的类型和回收策略等。例如:
    apiVersion: storage.k8s.io/v1
    kind: StorageClass
    metadata:name: local-storage
    provisioner: kubernetes.io/no-provisioner
    volumeBindingMode: WaitForFirstConsumer
    reclaimPolicy: Delete
    
    • 然后在PV的创建中使用这个StorageClass,并指定存储的节点亲和性,确保PV只会绑定到某个特定节点的本地存储上。例如:
    apiVersion: v1
    kind: PersistentVolume
    metadata:name: local-pv
    spec:capacity:storage: 5GiaccessModes:- ReadWriteOncestorageClassName: local-storagelocal:path: /mnt/disks/ssd1nodeAffinity:required:nodeSelectorTerms:- matchExpressions:- key: kubernetes.io/hostnameoperator: Invalues:- node1
    
    • 这个PV绑定到名为node1的节点上的/mnt/disks/ssd1目录,提供5GB的存储,只允许单个节点读写。

三、配置映射(ConfigMap)和秘密(Secret)

  1. 配置映射(ConfigMap)

    • 用于存储非敏感的配置信息,如配置文件、环境变量等。可以将配置文件的内容存储在ConfigMap中,然后将其挂载到容器内。例如:
    apiVersion: v1
    kind: ConfigMap
    metadata:name: my-config
    data:config.ini: |key1=value1key2=value2
    
    • 并在Pod中使用:
    apiVersion: v1
    kind: Pod
    metadata:name: my-pod
    spec:containers:- name: my-containerimage: my-imagevolumeMounts:- name: config-volumemountPath: /etc/configvolumes:- name: config-volumeconfigMap:name: my-config
    
    • 这里将ConfigMap的内容挂载到容器内的/etc/config目录,容器内的应用可以读取/etc/config/config.ini文件。
  2. 秘密(Secret)

    • 用于存储敏感信息,如密码、API密钥等。数据会被Base64编码,提高安全性。例如,存储一个密码的Secret:
    apiVersion: v1
    kind: Secret
    metadata:name: my-secret
    type: Opaque
    data:password: cGFzc3dvcmQ=
    
    • 在Pod中使用Secret:
    apiVersion: v1
    kind: Pod
    metadata:name: my-pod
    spec:containers:- name: my-containerimage: my-imagevolumeMounts:- name: secret-volumemountPath: /etc/secretvolumes:- name: secret-volumesecret:secretName: my-secret
    
    • 将Secret挂载到容器内的/etc/secret目录,容器内的应用可以通过文件读取密码。

四、EmptyDir卷

  1. 概念

    • 是一种临时存储,与Pod的生命周期绑定,当Pod被删除时,存储也会被删除。它可以用于同一Pod内的容器间共享数据。例如,一个包含主容器和辅助容器的Pod,可以使用EmptyDir来存储它们之间共享的数据。
  2. 使用方式

    • 在Pod的spec中添加EmptyDir卷:
    apiVersion: v1
    kind: Pod
    metadata:name: my-pod
    spec:containers:- name: main-containerimage: main-imagevolumeMounts:- name: shared-datamountPath: /data- name: side-containerimage: side-imagevolumeMounts:- name: shared-datamountPath: /shared-datavolumes:- name: shared-dataemptyDir: {}
    
    • 这里在Pod内创建了一个名为shared-data的EmptyDir卷,分别挂载到main-container/data目录和side-container/shared-data目录,两个容器可以通过这个共享卷交换数据。

五、HostPath卷

  1. 概念

    • 将主机节点上的文件或目录挂载到Pod内的容器中。使用时要谨慎,因为它将容器与主机的文件系统绑定,可能影响主机的安全性和稳定性。例如,将主机的/var/log目录挂载到容器内用于日志收集。
  2. 使用方式

    • 在Pod的spec中添加HostPath卷:
    apiVersion: v1
    kind: Pod
    metadata:name: my-pod
    spec:containers:- name: my-containerimage: my-imagevolumeMounts:- name: host-volumemountPath: /host-logvolumes:- name: host-volumehostPath:path: /var/log
    
    • 这里将主机的/var/log目录挂载到容器内的/host-log目录,容器可以访问主机的日志文件。

不同的数据持久化方式适用于不同的场景,需要根据应用的具体需求、对存储的安全性、性能、持久性等方面的要求来选择合适的持久化方案。例如,对于需要长期存储数据且可共享的应用,使用PV和PVC是个好选择;对于临时数据共享,可以使用EmptyDir;对于配置信息和敏感信息,分别使用ConfigMap和Secret;对于依赖主机本地存储的特殊场景,可以使用Local Volume或HostPath(谨慎使用)。


关于 Dockerfile 中 COPYADD 指令的异同点

一、相同点

  • 功能目的
    • COPYADD 都可以将文件或目录从构建上下文(build context)复制到 Docker 镜像中的指定位置。它们是构建 Docker 镜像时将本地文件包含进镜像的主要手段。例如,当你需要将应用的代码文件、配置文件或静态资源文件添加到镜像中,以便在容器中运行时,都可以使用这两个指令。

二、不同点

  • 功能特性

    • COPY
      • 功能相对简单,仅用于将本地文件或目录复制到镜像中。它的语法是 COPY <源路径> <目标路径>。例如:
      COPY app.py /app/
      
      • 上述示例将构建上下文中的 app.py 文件复制到镜像内的 /app/ 目录下。它的行为类似于 cp 命令,只做简单的复制操作,不会进行额外的处理。
    • ADD
      • 除了具有 COPY 的功能外,还支持一些额外的功能。
      • 它可以从 URL 下载文件并添加到镜像中。例如:
      ADD http://example.com/bigfile.zip /app/
      
      • 此指令会从指定的 URL 下载 bigfile.zip 并将其复制到镜像内的 /app/ 目录下。不过,在实际使用中,不推荐使用 ADD 来下载文件,因为 RUN curlRUN wget 等命令提供了更多的灵活性和透明度。
      • 它还具有自动解压缩的功能。如果源文件是一个压缩文件(如 .tar.gz.tar.gz.xz 等),并且目的是复制到一个目录中,ADD 会自动将其解压到该目录。例如:
      ADD archive.tar.gz /app/
      
      • 上述指令会将 archive.tar.gz 解压到 /app/ 目录中,而 COPY 不会进行解压操作。
  • 使用建议

    • 通常情况下,优先使用 COPY 指令,因为它的功能简单明确,行为可预测,有助于保持 Dockerfile 的清晰和可维护性。
    • 只有在确实需要从 URL 下载文件或需要自动解压压缩文件,并且这种行为是合理且安全的情况下,才考虑使用 ADD
  • 最佳实践示例

    • 以下是一个使用 COPYADD 的 Dockerfile 示例:
    FROM alpine:latest
    WORKDIR /app# 使用 COPY 复制本地文件
    COPY app.py /app/# 不推荐使用 ADD 从 URL 下载文件,此处仅作示例
    ADD http://example.com/bigfile.zip /app/# 使用 ADD 解压文件,这里假设 archive.tar.gz 是一个有效的压缩文件
    ADD archive.tar.gz /app/# 通常情况下,以下载文件为例,推荐使用 RUN 和 curl 或 wget 代替 ADD
    RUN wget http://example.com/bigfile.zip && unzip bigfile.zip -d /app/
    

在这个示例中:

  • COPY app.py /app/ 只是简单地将 app.py 从构建上下文复制到镜像的 /app/ 目录。
  • ADD http://example.com/bigfile.zip /app/ 从 URL 下载文件并添加到 /app/ 目录,但这种方式不推荐,因为使用 RUN wget 可以提供更多的下载过程控制。
  • ADD archive.tar.gz /app/ 会自动解压 archive.tar.gz/app/ 目录,而 COPY 不会执行解压操作。

使用 COPYADD 时要注意,它们的源路径是相对于构建上下文的,而不是相对于 Dockerfile 的位置。此外,使用 ADD 时要特别小心其额外的功能,避免引入不必要的复杂性或安全风险。例如,从不可信的 URL 下载文件可能会带来安全隐患,而自动解压功能可能会在不需要时造成意外的文件结构变化。

总的来说,对于简单的文件复制操作,建议使用 COPY;对于需要特殊处理(如解压)且符合最佳实践的情况,可以考虑使用 ADD,但要谨慎评估。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/893053.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

音视频入门基础:RTP专题(4)——FFmpeg源码中,判断某文件是否为SDP文件的实现

一、引言 执行《音视频入门基础&#xff1a;RTP专题&#xff08;2&#xff09;——使用FFmpeg命令生成RTP流》中的“媒体文件转推RTP的FFmpeg命令”会生成一个SDP文件&#xff0c;该文件内容如下&#xff1a; v0 o- 0 0 IN IP4 127.0.0.1 sNo Name t0 0 atool:libavformat 61…

【大数据2025】Hadoop 万字讲解

文章目录 一、大数据通识大数据诞生背景与基本概念大数据技术定义与特征大数据生态架构概述数据存储数据计算与易用性框架分布式协调服务和任务调度组件数仓架构流处理架构 二、HDFSHDFS 原理总结一、系统架构二、存储机制三、数据写入流程四、心跳机制与集群管理 安全模式&…

电脑换固态硬盘

参考&#xff1a; https://baijiahao.baidu.com/s?id1724377623311611247 一、根据尺寸和缺口可以分为以下几种&#xff1a; 1、M.2 NVME协议的固态 大部分笔记本是22x42MM和22x80MM nvme固态。 在京东直接搜&#xff1a; M.2 2242 M.2 2280 2、msata接口固态 3、NGFF M.…

回顾2024年在CSDN的成长

文章目录 我与CSDN的初次邂逅初学阶段的阅读CSDN&#xff1a;编程新手的避风港初学者的福音&#xff1a;细致入微的知识讲解考试复习神器&#xff1a;技术总结的“救命指南”曾经的自己&#xff1a;为何迟迟不迈出写博客的第一步兴趣萌芽&#xff1a;从“读”到“想写”的初体验…

抖音ip属地不准是什么原因?可以改吗

在数字化时代&#xff0c;社交媒体平台如抖音已成为人们日常生活的重要组成部分。随着各大平台对用户隐私和数据安全的日益重视&#xff0c;IP属地的显示功能应运而生。然而&#xff0c;不少抖音用户在使用过程中发现&#xff0c;显示的IP属地与实际位置存在偏差&#xff0c;这…

Win11 安装与配置 Java环境 JDK(以JDK11为例)

0&#xff0c;下载JDK 访问JDK官网&#xff1a;Java Downloads | Oracle 选择对应版本进行下载&#xff0c;目前21和23都是可以直接下载的 但是如果需要下载旧版本&#xff0c;往下拉找到要下载的版本&#xff0c;不过这时候下载就需要登录账号了&#xff0c;注册一个就成 2&…

LabVIEW串口通信调试与数据接收问题

在使用LabVIEW进行串口通信时&#xff0c;常常会遇到无法接收数据的情况。这可能与串口设置、连接、设备响应等多方面因素相关。本文将详细讨论如何使用LabVIEW进行串口通信&#xff0c;并提供常见问题的排查与解决方法&#xff0c;帮助用户更高效地进行数据接收调试。通过调整…

概率扩散去噪模型DDPM

文章目录 摘要abstract高斯噪声扩散模型正向过程逆向过程 论文阅读论文创新点解决的问题 总结参考文献 摘要 本周主要学习了高斯噪声在扩散模型中的应用及相关算法实现。扩散模型受到自然现象的启发&#xff0c;通过在图像中引入高斯噪声&#xff0c;模拟出扩散效果&#xff0…

Python操作Excel——openpyxl使用笔记(3)

3 单元格基本操作 3.1 访问单元格和读写其内容 在前面的例子中&#xff0c;已经简单演示过了向单元格中写入和读取数据。这里进一步提供访问单元格的一些方法。和前面一样&#xff0c;使用工作表的索引方式&#xff0c;可以快速定位一个单元格&#xff1a; import openpyxl w…

2025.1.18机器学习笔记:PINN文献精读

第三十周周报 一、文献阅读题目信息摘要Abstract创新点物理背景网络框架实验实验一&#xff1a;直道稳定流条件实验二&#xff1a;环状网络中的非稳定流条件 结论缺点及展望 二、代码实践总结 一、文献阅读 题目信息 题目&#xff1a;《Enhanced physics-informed neural net…

CSS 的基础知识及应用

前言 CSS&#xff08;层叠样式表&#xff09;是网页设计和开发中不可或缺的一部分。它用于描述网页的视觉表现&#xff0c;使页面不仅实现功能&#xff0c;还能提供吸引人的用户体验。本文将介绍 CSS 的基本概念、语法、选择器及其在提升网页美观性方面的重要性。 什么是 CSS&…

Web开发 -前端部分-CSS-2

一 长度单位 代码实现&#xff1a; <!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document<…

Linux shell zip 命令实现不切换当前终端的工作目录打包另一个路径下的文件和文件夹

如图&#xff0c;我想在当前目录 ~/Bypasser 下打包 src 文件夹&#xff0c;使得生成的 zip 压缩包中具有 src 文件夹下的所有文件夹、所有文件夹中的所有子项目、所有文件&#xff0c;保留层次结构但压缩包中最外面不包含 src 这一层。执行命令时&#xff0c;不要改变当前终端…

QT跨平台应用程序开发框架(3)—— 信号和槽

目录 一&#xff0c;基本概念 二&#xff0c;connect函数使用 2.1 connect 2.2 Qt内置信号和槽 2.3 一些细节 三&#xff0c;自定义信号和槽 3.1 自定义槽函数 3.2 自定义信号 3.3 带参数的信号槽 四&#xff0c;信号和槽的意义 五&#xff0c;信号和槽断开连接 六&…

聊聊如何实现Android 放大镜效果

一、前言 很久没有更新Android 原生技术内容了&#xff0c;前些年一直在做跨端方向开发&#xff0c;最近换工作用重新回到原生技术&#xff0c;又回到了熟悉但有些生疏的环境&#xff0c;真是感慨万分。 近期也是因为准备做地图交互相关的需求&#xff0c;功能非常复杂&#x…

一、1-2 5G-A通感融合基站产品及开通

1、通感融合定义和场景&#xff08;阅读&#xff09; 1.1通感融合定义 1.2通感融合应用场景 2、通感融合架构和原理&#xff08;较难&#xff0c;理解即可&#xff09; 2.1 感知方式 2.2 通感融合架构 SF&#xff08;Sensing Function&#xff09;&#xff1a;核心网感知控制…

golang标准库path/filepath使用示例

文章目录 前言一、常用方法示例1.将相对路径转换为绝对路径2.获取路径中最后一个元素3.获取路径中除去最后一个元素的部分4.路径拼接5.将路径拆分为目录和文件名两部分6.返回一个相对路径7.文件路径遍历8.根据文件扩展名过滤文件9.使用正则表达式进行路径匹配 前言 path/filep…

HBase实训:纸币冠字号查询任务

一、实验目的 1. 理解分布式数据存储系统HBase的架构和工作原理。 2. 掌握HBase表的设计原则&#xff0c;能够根据实际业务需求设计合理的表结构。 3. 学习使用HBase Java API进行数据的插入、查询和管理。 4. 实践分布式数据存储系统在大数据环境下的应用&#xff0c;…

HarmonyOS NEXT应用开发边学边玩系列:从零实现一影视APP (三、影视搜索页功能实现)

在HarmonyOS NEXT开发环境中&#xff0c;可以使用nutpi/axios库来简化网络请求的操作。本文将展示如何使用HarmonyOS NEXT框架和nutpi/axios库&#xff0c;从零开始实现一个简单的影视APP&#xff0c;主要关注影视搜索页的功能实现。 为什么选择nutpi/axios&#xff1f; nutpi…

天机学堂3-ES+Caffeine

文章目录 day05-问答系统表 用户端分页查询问题目标效果代码实现 3.6.管理端分页查询问题ES相关 管理端互动问题分页实现三级分类3.6.5.2.多级缓存3.6.5.3.CaffeineTODO&#xff1a;使用Caffeine作为本地缓存&#xff0c;另外使用redis或者memcache作为分布式缓存&#xff0c;构…